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In this thesis, a stochastic version of the Richardson's arms race model 

is developed through the method of birth-death processes. The expected 

value of the model is explored and shown to be analogous to the original 

deterministic arms race model. 

The numerical method of randomization is then expanded and applied to 

the stochastic model. A comparison is then made between outcomes of the 

deterministic and stochastic models. 



Chapter One 

Preliminaries and Background 

• 1.1 Introduction 

The Richardson's Arms Race Model has been studied widely since 

its introduction in the 1930's by its namesake Lewis F. Richardson. The 

idea of using a mathematical model to describe a diplomatic situation 

was most novel at that time. Richardson was a British physicist who 

worked mostly in the area of meteorology. While working as an 

ambulance driver during World War I, Richardson began work on 

formulating a mathematical model of the causes of war. Richardson 

had a strong Quaker upbringing which inspired his pacifism and gave 

him impetus to find the causes of war in hopes that it could be 

prevented. Richardson believed that the central cause of war was the 

build up of nations' arms, thus his primary focus was on nations' 

armament stocks [7]. 

Richardson's basic model began with only two nations. Let us 
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imagine there are nations X and Y who are neighbors [9]. Since 

changes in X's and Y's war readiness may be an indicator of impending 

military action, we are interested in the contributing factors that will 

make these countries increase or decrease the amount of armaments that 

they own. We will use the variables x and y to denote the amounts of 

arms that X and Y respectively have. In light of these variable name 

choices, we will denote the rate of change in X's armaments over time 

as and the rate of change in Y's armaments as 

Let us consider the perspective of country X. What should cause 

country X to increase or decrease its armament? The level of Y's 

armaments should have a positive impact on the change in X's 

armaments. Whether Y is a friend or foe, there is a natural fear of a 

neighbor having arms. So we introduce the term ay into the expression 

for If Y is a friend, then a will be a small nonnegative number. If 

Y is a foe, then a will be a larger nonnegative number. This term is 

called the "mutual fear" term. 

If this term were the only one, then X would perpetually increase its 

armament. We know however that this situation does not mirror real 
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life. Nation X is constrained by the impact on its economy due to 

greater and greater military expenditures. We model this constraint by 

subtracting a "drag" term yx from the mutual fear term ay . The 

nonnegative "drag" coefficient y may be interpreted as to how sensitive 

the policy makers of the nation are to economic drag due to increased 

military spending. A totalitarian government is probably less sensitive, 

so the drag coefficient would be small. On the other hand, many 

democracies or less wealthy nations may be more sensitive when 

military spending encroaches on the standard of living of the citizens, 

so the drag coefficient would be higher in these situations. 

Under the scenario that has been set up so far, if neither nation had 

any armaments, then neither nation would arm itself. However if nation 

X had some grudge against nation Y, then it seems likely that X might 

arm itself. So we include a constant term £ in the expression for If 

this term is positive, then it is interpreted as a natural animosity of 

country X toward country Y. If the term is negative, then it is 

interpreted as natural goodwill of country X toward country Y. An 

amalgam of possibilities may account for the goodwill or animosity, 



including such things as border disputes, similarities or differences in 

religions, a common language, etc. 

Arguments similar to the above can be made from country Y's 

perspective. The result is the basic Richardson's model consisting of a 

pair of differential equations describing the rates of change in arms of 

two countries over time. 

dx 
d t 

= a y - yx + £ 

—^ = I5x - 6v + n , d t y ' d) 

f o r a , (5, y , <5 > 0 . 

This model is a rather simple representation of the actual 

complexities involved in an arms race between two countries. 

Richardson explained that this formulation was a reduction of an earlier 

model that used many more variables as well as square and interactive 

terms; he eventually decided that the elements above were the most 

valuable in explaining the situation while keeping a focus on simplicity. 
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It should also be noted that Richardson allowed for the variables x and 

y to be negative. What does it mean to own a negative armament? To 

allow for a robust interpretation of his results, Richardson interpreted 

negative values for these variables as cooperation between the nations 

in terms of economic trade. 

Richardson examined the results of the model with differing values 

for the various coefficients, especially to determine if the model 

stabilizes. Michael Olnick [7] summarizes these results succinctly in 

An Introdution to Mathematical Models in the Social and Life Sciences, 

and they are paraphrased here. There are two cases when £ and 7/ are 

positive; these parameters being positive may be interpreted as a natural 

animosity between the two nations. When y6-a/3 is positive, there will 

be a stabilized arms race—the values for x and y will converge to set 

values as time goes on. On the other hand if y5-afi is negative, then 

there is a runaway arms race, meaning as time goes on x and y become 

progressively larger. There are also two cases when the £ and r] are 

negative, which we interpreted above as meaning that the countries 

actually have goodwill toward one another. The first of these cases is 
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•yd-afi being positive; total disarmament of both nations will result. The 

second case, when y8-a/3 is negative, yields one of two results. Either 

there will be total disarmament if the inital amount of arms is below a 

certain value, or there will be a runaway arms race if the initial amount 

of arms by both nations is above that certain value. An interesting 

point to note about the last case is that even though there is authentic 

goodwill between the two nations a runaway arms race can still occur. 

• 1.2 Variations 

Richardson himself included a number of variations on the primary 

model discussed above [9]. One of the simplest variations was 

changing the first term of each of the equations so that mutual fear did 

not depend on the absolute amount of arms of another country but on 

the difference between one's own amount of arms and the rival's amount 

of arms. The differential equations would now appear as 

= a (y - x) - yx + Q 
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dy 
d t 

= /3 (x - y ) - <5y 

f o r a , /3, y , 6 > 0 

An interesting result of this variation, which Richardson calls the 

"rivalry" variation, is that it will always result in a stabilizing arms race. 

Some of Richardson's variations included discussions of equations 

similar to the primary model for any number of nations, not just two. 

Also, the effects of improved communication and of the sizes of the 

nations were studied. In addition to variations on the model, 

Richardson offered evidence to support his theories by using 

expenditure figures of European powers and describing how these 

expenditures related to the outbreak of war. This attempt to gather real 

world support for his theories culminated in his work The Statistics of 

Deadly Quarrels [10]. 
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Chapter Two 

The Stochastic Model 

• 2.1 The Derivation 

Clearly, the model under investigation is an oversimplification. So 

it is a natural extension to enrich the model by grouping the assorted 

effects not included explicitly in the model as a random influence on 

the model and then study the results. 

Previous attempts have been made at stochastic extensions of the 

model. One of these extensions considers the deterioration of arms as a 

stochastic factor in the model [2]. Another approach was to include a 

uniform random variable in the model to account for all of the random 

perturbations [5]. 

We will approach the problem from the perspective of a birth-death 

process. We will develop a model and then show that the expected 

value of the stochastic model presented matches the original 

deterministic Richardson's model. 

First, we must make some assumptions. Our model will assume that 
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expenditures of countries X and Y are discrete valued; thus we will 

denote the expenditures of X and Y by the variables m and n, 

respectively. We introduce two interdependent random variables, M(t) 

and N(t), whose outputs are the possible discrete levels of expenditure 

of X and Y. Also, we need to break apart the grievance term into two 

components, one nonnegative and one nonpositive. This separation will 

make our model capable of dealing with the analog of the original 

model when we have negative values for these grievance terms. Unlike 

the Richardson model however, we will consider only nonnegative 

values of m and n. Our model is expressed as the probability of being 

at given levels of expenditure, m and n, at time t and is given by 

Pm ,n ( t + A t ) = (an + p) (At) Pm_i,n ( t ) 

+ (y (m+ 1) +K) (At) P m + i , n ( t ) 

+ (/3m + z) (At) Pm ,n_! ( t ) 

+ (6 (n + 1) + A) (At) P m , n + i ( t ) 

+ ( 1 - (an + p + ym + K (3) 

+ /3m + z + c5n + A) (At) ) Pm ,n ( t ) , 

f o r a , /3, y , 6, p, z, K, A > 0 , w h e r e 

Pm,n ( t ) = P {M ( t ) = m, N ( t ) = n} . 
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As mentioned above, we have broken apart the grievance terms. So, the 

expression p-K is analogous to the parameter £ in the original model, 

and the expression r-A is analogous to the parameter r] in the original 

model. 

We will assume that in any given time step (At) only one event will 

happen. The probability that the model is in a particular state in a given 

time t+At is the sum of probabilities of all of the cases which may occur 

during At. Since we are only allowing for one event in a given time 

step, there are five possible cases: 

1. Country X increases its armaments 

2. Country Y increases its armaments 

3. Country X decreases its armaments 

4. Country Y decreases its armaments 

5. Nothing happens 

Each of these terms consists of two parts. The first factor is the 

probability that a given event happens. The second factor is the 

probability that the system was in a state where this step could happen. 

We also assume that these events are independent, so that the 

probability of both occurring is the product of these factors. 
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We will now see how each of the terms in our model correlates to 

the original model. 

1. (an + p) (At) Pm- i ,n ( t )—This term corresponds to the case 

that the model is at one less of m and at the same level of n in the 

previous time step. The first factor corresponds to the mutual fear term 

ay plus the positive contribution p from the grievance term £ in the first 

differential equation of the original Richardson model (1). The second 

factor states that the contribution from this term is proportional to the 

length of the current time step At. The last factor is the probability that 

the model has arrived at this state at this time step. 

2. (y ( m + 1 ) + K) (At) Pm+i,n ( t ) ~ This term corresponds to the 

case that the model is at one more of m and at the same level of n in the 

previous time step, t. The first factor corresponds to the sum of a term 

y(m+l) which corresponds to the drag term yx and the negative 

contribution K which corresponds to the grievance term £ in the first 

differential equation of the original Richardson model (1). Again, the 

second factor states that the contribution from this term is proportional 

to the length of the current time step At. The last factor is the 

probability that the model has arrived at this state at the previous time 
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step t. 

3. (/3m + z) (At) P r a ,n-i ( t )—This term corresponds to the case 

that the model is at one less of n and at the same level of m in the 

previous time step t. The first factor corresponds to the mutual fear 

term /?x plus the positive contribution r of the grievance term r/ of the 

second differential equation of the original Richardson model (1). The 

second factor consists of the length of the time step At. The last factor 

is the probability that the model has arrived at this state at this time step 

t. 

4. (6 (n + 1) + A) (At) Pm,n+i ( t ) —This term corresponds to 

the case that the model is at one more of n and at the same level of m in 

the previous time step t. The first factor is analogous to the drag term 

8y plus the negative contribution A from the grievance term of the 

second differential equation in the original Richardson's model (1). 

5 . ( 1 - (an + p + ym + K + /3m + z + 6n + A) ( A t ) ) Pm ,n ( t ) — 

This term considers the probability that nothing happens in this time 

step between t and t+At. Thus, we have one minus the sum of the 

probabilities of the other cases times the probability that we were 

originally in this state. 



Simple equation manipulation gives 

Pm,n ( t + A t ) - P m , n ( t ) = (otn + p) (At) Pm_i,n ( t ) 

+ (y (m+ 1) + x ) (At) Pm+1,n ( t ) 

+ (/3m + z) (At) P m , n - i ( t ) 

+ (<5 (n + 1) + A) (At) Pm , n + i ( t ) -

(an + p + ym + x + /3m + z + <5n + A) (At) Pm ,n ( t ) . 

Dividing both sides by At we obtain, 

P - ( t + A ^ - P - " ( t > = ( an + p ) Pm_1-n ( t ) 

+ (y (m + 1) + K) P m + i , n ( t ) 

+ (/3m + z) Pm ,n_i ( t ) 

+ (6 (n + 1) + A) Pm , n + 1 ( t ) 

- (an + p + ym + K + /3m + z + <5n + A) Pm ,n ( t ) . 

If we assume that the limit as At approaches 0 exists, then 

dPm,n ( t ) = 

d t 

Pm ,n ( t + At ) - Pm ,n ( t ) 
l i m 
At->0 At 

(an + P) Pm-l,n (t) 
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+ (y (m + 1) + K) P m + i , n ( t ) 

+ (/3rn + z) Pm,n-1 ( t ) 

+ (5 (n + 1) + A) P m , n + 1 ( t ) 

- (an + p + ym + k + /3m + z + 5n + A) Pm ,n ( t ) , 

f o r m = 0 , 1 , 2 , . . . n = 0 , 1 , 2 , . . . 

We therefore have an infinite system of differential equations (6). 

Often these types of systems may be solved recursively given an initial 

condition. This method seems to be untenable in this case, since there 

is recursion in two variables. In the next section, we will introduce a 

tool that may be useful in analyzing this system. 

• 2.2 The Probability Generating Function 

The probability generating function (pgf) is a valuable tool for 

analyzing discrete valued random variables. The pgf 0 of our model is 

0 ( t , ZI, Z 2) = 

OO 
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Differentiation with respect to t yields 

dPm ,n ( t ) a t 0= > > ' z 1
m z 2

n 
I — d t J n=0 m=0 

Substitution from Equation (6) and separation of terms gives 

CO 

| CO 

dt 4 = a / X n z i m z 2 n P m " 1 ' n ( t ) 

t ^ 0 

oo 

p V y z im z 2
n pm^1 / n ( t ) + _ 

Jn=0 m=0 

CO 
! CO 

+ Y > ^ (m+ 1) Zlm Z2
n Pm+l,n (t) 

L- 1 n-O „ n=0 m=0 

+ * > > Zl Z2n Pm+l,n ( t ) 
^ t c j m =0 

CO 

V—I 00 

+ /3 \ ^ T mzi m z 2
n Pm,n-i ( t ) 

^ ' n=0 

(8) 

m=0 
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+ r > > Z l
m z 2

n Pm ,n_i ( t ) 

m=0 

+ 5 > > (n + 1) Z ! m z 2
n 

^m, n+1 ( t ) 
m=0 n=0 

CO 
1 CO 

A \ ^ Z l
m z 2

n P m , n + i ( t ) 

a > > n z i m z 2
n n m, n ( t ) 

m=0 

CO 

P > ^ Z 1
M Z 2

n P m , n ( t ) 

- y > > m Z l
m Z 2 n P m , n ( t ) 

m = 0 
n=0 
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00 

K ^ T £ z i m Z 2 n P m , n ( t ) 
n n=0 m=0 

-13 > ^ m Z i m Z2n Pm,n ( t ) 
t ^ 0 

CO 1 03 

m _ n - Z ) ) Zim z 2
n Pm ,n ( t ) 

m=0 

CO 

m ̂  n -<5 > ^ j 1 1 2 ! Z2 Pm,n ( t ) 

- A > Z2 Pm,n ( t ) . 

Rewriting some of the terms as partial derivatives of 4> gives 
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dt 0 = a z i z2 (dZ2 0) + p z i 0 + y (aZl 0) 

X 
0 + /3z]_ z 2 (aZ l 0) + IZ 2 0 + 6 (dZ2 0) + 

(10) 

A 0 - a z 2 (aZ2 0) - p 0 - y z x (aZl 0) + 

- X0 - /3zi (aZl 0) - T0 - 6Z 2 (aZ2 0) - A0 . 

We now group by derivatives of 

a t 0 = (/3zx z2 + y - yz x - (aZl 0) 

+ ( a z i z2 + 6 - a z 2 - 6z 2 ) (dZ2 0) 

To obtain the pgf 0 of the System (6), a solution of Equation (11) is 

required. However, this partial differential equation is at best difficult 

to solve. It remains an open problem to find an explicit solution to 

Equation (11). The expression in Equation (11) though can be used to 

gather information about the system. 

(11) 

+ PZ! + 
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• 2.3 The Expected Value 

The partial differential equation (11) yields useful information about 

our stochastic model. Using the fact that the expected value of a 

random variable can be obtained from the derivative of its pgf, we take 

the derivative in Equation (11) with respect to z\: 

d Z l , t 0 = (/3zi Z2 + y - TZ! - /3Z!) ( a Z l , Z l 0 ) 

+ (/3Z2 - Y - 13) (dZl 0) 

+ (azi z2 + <5 - az2 - 6z2) (a z i , z 20) 

+ ( a z i ) (dZ2 0) 

Now, dZut(p - dt;Zl(p since 0 is continuous where it exists. So letting 

z i = l and z 2 =l we obtain 

(12) 

+ (P - KZf2) 0 . 

a t ( Z l 0 (1 , 1) = a (aZ2 0 ( i , 1 ) ) 

Y (aZ l 0 ( i , 1 ) ) (13) 

+ (p — k) 0 (1 , 1) . 

From Equation (11) and the properties of a pgf we can write 
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dt E[M (t) ] 
(14) 

a E [N ( t ) ] - y E [ M ( t ) ] + (p - x ) . 

Equation (14) corresponds with the first differential equation in the 

original model (1) the change in country X's expected arms 

dt E [ M (t) ] is equal to a times the expected amount of arms of 

country Y minus y times the expected amount of arms of country X 

plus the goodwill term p-K which we defined to be 

Similarity, we can take the derivative in Equation (11) with respect 

to z2 to obtain the equivalent of the second equation in the original 

model: 

dz2,t0= (/3zi z2 + Y - YZi - /3Z!) (aZ2/Zl0) 

+ (/3z]_) (dZl 0) 

+ ( a z i z 2 + 5 - a z 2 - C5Z2) ( d Z 2 , Z 2 0 ) 

+ (azi - a - 6) (dZ2 0 ) 
(15) 

+ (z - X z2
 2) 0 . 

Again letting z i = l and z 2 = l , we obtain 



21 

a t / Z 2 0 ( i , 1) = a (aZ l 0 (1 , 1 ) ) 

- (5 (aZ2 0 (1 , 1 ) ) (16, 

+ ( r - A) (0 (1 , 1 ) ) . 

Using a property of a pgf and the continuity of 0, we may rewrite 

Equation (16) as 

dt E [ N ( t ) ] = /3E[M ( t ) ] - 5 E [ N ( t ) ] + ( r - A ) . (17) 

As above, this equation agrees precisely with the second equation of the 

original model. The change in Y's expected armaments with respect to 

time dt E [ N ( t ) ] is equal to /3 times the expected amount of country 

X's armaments minus 8 times the expected amount of country Y's 

armaments plus the goodwill term r-A which we defined to correspond 

to T], 

It should be clear that the model we have created in system (4) is 

indeed a stochastic version of the Richardson's arms race model. The 

expected value of our model corresponds to the deterministic orginal 

model. In the next chapter, we will present a numerical solution for the 

stochastic model presented in this chapter. 
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Chapter Three 

Randomization-a Numerical Solution 

• 3.1 Introduction to Randomization 

Randomization is a numerical method for finding an approximation 

of the transition probability function for a discrete valued, continuous 

time Markov chain. We shall use the method presented in Medhi [4] 

and Krinik [6] to approximate the transition probabilities for a simple 

birth-death process. A graphical representation of a birth-death process 

is shown in the following figure: 

OAo /—v. Xi ^ — A 2 

( 1 ) ( 2 ) ' ' 
Ho ^ Hi ^ ^ 1*2 

Similar to the derivation in the last chapter, the probability of being at a 

given state n at time t+At would be 
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Pn (t + At) = An+1 (At) Pn+1 (t) 

+ ̂ n.1 (At) Pn-l (t) 
(14) 

+ (1 - (An +iUn) (At) ) Pn (t) . 

So, 

P - ( t + A t ) - P m ( t ) - An+i P n + i ( t ) 

(19) 

+ )Un_i Pn-1 (t) 

- (An +^n) Pn (t) . 

Taking the limit of both sides with At->0 yields 

P„ ' ( t ) = l i m P " ( t + A t ) - P " ( t ) At-»0 At 

(20) 

= An + i Pn + 1 (t) 

+ [J-n-1 Pn-1 (t) 

- (An + /Jn) Pn (t) 
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This gives us an infinite system of differential equations having one 

equation per state. We may write this system in the form of an infinite 

dimensional matrix. We will treat multiplication of an infinite 

dimensional matrix as we would an n-dimensional matrix. 

P' (t) = 

' P o ' ( t ) 0 0 
0 P I ' ( t ) 0 
0 
0 

o p 2 ' ( t ) 
0 0 

0 
0 
0 

p 3 ' ( t : 

0 
0 
0 
0 

This matrix is equal to the product of two other matrices 

(21) 

the transition 

rate matrix 

Q = 

-A 
Hi 
0 
0 

o A 0 

- A i -

U2 
0 

0 
Ai 

- A 2 - l l 2 

(J-3 

0 0 
0 0 

a 2 0 

•A3 - IJ3 A3 

(22) 



and transition probability matrix 

P (t) = 

'Po,o(t) Po,i(t) 
Pl,o(t) Pl,l(t) 
P2,0(t) P2,l(t) 
P3,0(t) P3,l(t) 

Po,2 (t) Po, 3 (t) 
Pi, 2 (t) Pl,3(t) 
P2,2(t) P2,3(t) 
P3,2(t) P3,3(t) 

wher ep±rj(t) is the probability of 

moving from state i to state j at time t . 

So, 

P' (t) = Q P (t) . 

Thus the matrix solution of this differential equation is 
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P ( t ) = e t Q . (25) 

The method of randomization replaces Q with a stochastic matrix P. To 

apply the method, we must also make a technical assumption. We 

assume that this transition rate matrix Q is uniformizable, which means 

that the absolute values of the diagonal elements of Q have a finite 

maximum d. In other words, Q has a dominant eigenvalue. Creating 

the matrix P is done by dividing each element of Q by the maximum d 

of the diagonal and adding to this new matrix an appropriately sized 

identity matrix I. So, 

(26) 

Solving for Q, we obtain 

Q = d (P - I ) . 
(27) 

Substituting into equation (25) above gives 

P ( t ) = e d (P-I) t 
(28) 
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With simple manipulation we have 

P ( t ) = e -dt gdtP 
(29) 

The exponential of a matrix may be defined as it often is for real 

numbers by its Taylor series. Thus, an approximation for the matrix 

P(t) can be obtained from 

We will of course have to limit the number of terms that we calculate in 

the Taylor series; we will therefore only have an approximation of P(t). 

This power series expansion requires that d must be finite, which 

explains our earlier assumption of this fact. 

We will also be unable to practically deal with an infinite matrix, so 

we may have only a finite number of states in the process. Using a 

large number of states may allow us to approximate an infinite system. 

Wherever we truncate the process, a single absorbing state is placed. 

The probability that we are in this state is a bound on the error for the 

other states due to truncating the process at any given time [3]. 

(30) 

n=0 



• 3.2 Randomization for the Stochastic Richardson Model 

How shall we apply this randomization method to the stochastic 

Richardson model? Our model differs from the situation presented in 

Section 3.1 in one very important respect. The process moves in not 

one but two directions. A graphical representation is given as 
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While the true situation of our model is that the number of states is 

infinite in both vertical and horizontal directions, the only hope we 

have to obtain a numerical solution will require artificially limiting the 

number of states. So, we will have one state that will accept all of the 

transitions to states that were truncated. Notice that the transitions are 

consistent with the possible movements of our model explained in 

Chapter 2. 

Next, we need to "flatten" this two dimensional process into one 

dimension. This flattening is accomplished by numbering the states 

and then treating the states as if they were in one dimension. 

If we take the convention of numbering the rows and columns 

starting with zero, then we find the row of a given state by performing 

integer division of the new numbering by the number of columns. 

Similarily, we find the column of a given state by finding the 

congruence modulo the number of columns . For example, state five is 

in row 1 since 5 divided by 3 is 1. State five is in column 2 since 5 

modulo 3 is 2. 

We are now in a position of being able to construct the Q matrix we 
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discussed in the last section. Once this construction is completed, we 

will use the randomization method outlined above. 

• 3.3 Numerical Comparison of the Original Richardson Model and 

the Stochastic Richardson Model 

In this section we will apply the randomization method to obtain 

transient probabilities for the stochastic model. We will also compare 

these approximate probabilities with the deterministic model by 

proceeding through concrete examples using specific values for the 

parameters in the model. The examples are chosen specifically to 

correspond with the four general situations described by Olnick that 

were discussed in Chapter 1. They are a stabilized arms race, a 

runaway arms race, total disarmament, and the situation that yields 

disarmament or a runaway race depending on the starting point. 

A few observations should be made about the implementation of the 

numerical method outlined in the last section. A lattice of size seven by 

seven is used to make estimations of the stochastic model. The result is 

a fifty by fifty matrix to be used in most calculations; a lattice of any 

larger size would take a great deal of computation time. Also, the Euler 
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method is implemented to obtain results for the deterministic model for 

comparison. Mathematica code that is used for both the randomization 

technique and the Euler method implemented are included in the 

appendices. 

• 3.3.1 The Stabilized Arms Race 

We recall that a stabilized race results when y8-a(3 is positive and £ 

and rj are positive. So, the parameters of the deterministic model are set 

as follows: 

a=l p=1 

7=1.5 <5=1.5 

These values for the deterministic model correspond to the following 

values in the stochastic model: 

<r=i 77=1. 

a= 1 fi= 1 

7=1.5 5=1.5 

A = 0 T = 1 

K = 0 P = 1. 
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Also, we will assume a starting point at t=0 for countries X and Y to be 

at 3 weapons units each. (These are units of weapons not necessarily 3 

weapons.) The results obtained are 

Deterministic Stochastic 

t 

0.1 

0.2 

0..5 

0.8 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

5.5 

6.0 

6.5 

7.0 

X Y 

2.95122 2.95122 

2.90481 

2.77875 

2.67025 

2.60645 

2.47228 

2.36779 

2.28642 

2.22305 

2.1737 

2.13527 

2.10534 

2.08203 

2.06388 

2.04975 

2.03874 

2.03017 

2.90481 

2.77875 

2.67025 

2.60645 

2.47228 

2.36779 

2.28642 

2.22305 

2.1737 

2.13527 

2.10534 

2.08203 

2.06388 

2.04975 

2.03874 

2.03017 

E[X] 

2.95313 

2.9197 

2.89057 

2.90535 

2.92527 

2.99634 

3.08712 

3.18896 

3.29632 

3.40574 

3.51508 

3.62303 

3.72885 

3.83209 

3.93253 

4.03007 

4.12469 

E[Y] 

2.95313 

2.9197 

2.89057 

2.90535 

2.92527 

2.99634 

3.08712 

3.18896 

3.29632 

3.40574 

3.51508 

3.62303 

3.72885 

3.83209 

3.93253 

4.03007 

4.12469 
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7.5 2.0235 2.0235 4.21603 4.21603 

8.0 2.0183 2.0183 4.29018 4.29018 

8.5 2.01425 2.01425 4.19134 4.19134 

The expected values of the stochastic model do not seem to agree very 

well with the deterministic model. Up until t=0.5, the numbers seem to 

agree fairly well, but as the deterministic values seem to be getting 

closer to x and y being 2 units, the expected values of the stochastic 

models are inching up. The explanation is that the absorbing state 

holds in much of the probability that would normally go back into the 

system. A graphical representation of the probabilities makes this point 

clear. The absorbing state is to the right of the lattice, which starts at 

(0,0) and goes up to (6,6). The size of the dots reflects the magnitude 

of the probabilities. 

For t=0.1, 
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We note that the dots below and to the left of the starting point are 

larger than those that are above and to the right indicating the slight 

downward trend. 

At t=0.2: 
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At t=0.5 the trend is going towards (2,2), but the absorbing state is 

larger. 

At t=0.8, the pattern is similar, but the absorbing state continues to 

grow. 
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At t=l, most of the probability is very near (2,2), but the absorbing state 

is much larger. 

• • 

• • • 

• • 

At t=2, things are still similar to above with a still larger absorbing state. 

• • 

At t=3, things are still similar to above with a yet larger absorbing state. 



• • 

• • 
• • 

At t=4, the situation is very near to that at t=3. 

• • • -
• • 

At t=5, the situation is nearly identical to that at t=4. This is important 

since it implies a more stable situation. 



• • 
• • 

At t=6, the situation is still almost identical, but that absorbing state of 

course continues to grow. There is still a slight chance of getting away 

from the bottom left corner and eventually ending up in the absorbing 

state. 
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Finally looking at t=8, we see that the situation is very similar, but 

again we have a slightly larger absorbing state. In order to obtain good 

results, this absorbing must ideally be kept at bay by increasing the 

lattice size. As mentioned above however, doing so results in the 

problem of computing resources. 

• 3.3.2 The Runaway Arms Race 

The next case that we will consider is the runaway arms race. This 

case occurs when in the deterministic model yd-a/3 is negative and £ 

and T] are positive. The parameters of the deterministic model are set as 
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a= 1 J3=l 

7 = 0.5 S =0.5 

(=1 tj= 1 • 

This corresponds to the following values in the stochastic model: 

a = 1 J3= 1 

7 = 0.5 (5 = 0.5 

A = 0 T = 1 

K=0 p=1. 

We will also take as a starting point 2 units of weapons each for 

countries X and Y. The following results were obtained: 

Deterministic Stochastic 

t X Y E[X] E[Y] 

0.1 2.20503 2.20503 2.20517 2.20517 

0.2 2.42057 2.42057 2.4226 2.4226 

0..5 3.13578 3.13578 3.18863 3.18863 

0.8 3.9667 3.9667 4.06576 4.06576 

1.0 4.59406 4.59406 4.6159 4.6159 

1.5 6.46641 6.46641 5.66139 5.66139 

Computations were discontinued at this point, since as would be 

expected, it is more likely that as time goes on the amounts of arms 
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become larger for both countries, and our estimations are limited to 

seven. However, we note how close the numbers are for times of one 

and less. This process can be seen more clearly by diagrams of the 

lattice where the size of a location indicates the probability that the 

system is in this state at the given time. The general absorbing state is 

alone on the right. 

At t=0.1: 

In such a short time, it is very unlikely that the system has moved from 

its original location. 

At t=0.2, things are a bit more dispersed mostly going up. 
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At t=0.5: 

• • 

• • • 
• • 
• • 

At t=l, we note how large the absorbing state has become, meaning that 

the probability of being larger than seven is quite high at this point. 
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At t=1.5, it is almost guaranteed that in both the x and y directions that 

both are greater than seven. 

We could enlarge the lattice to obtain better results at this time 

interval, but as was mentioned before, computation times increase 

rapidly. Also, we know that the expected value of the stochastic model 
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agrees with the deterministic model. Since these values for the 

parameters will yield a runaway arms race in the deterministic model, 

the situation above will continue to happen even if the size of the lattice 

were increased, though it would take more time. The values for x and y 

would eventually become larger than the arbitrary size of the lattice. 

• 3.3.3 Total Disarmament 

The third case which we will be observing is the one that yields total 

disarmament. This situation occurs when in the deterministic model 

yd-a/3 is positive and £ and 77 are negative. The parameters of the 

deterministic model are set as 

a = 0.5 >8 = 0.5 

7=1 5=1 

£ = -1 rj = -1 . 

This corresponds to the following parameter settings for the stochastic 

model: 

a = 0.5 (3 = 0.5 

7=1 6=1 
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A = 1 

K= 1 

T = 0 

p= 0 

Starting at x=3, y=3 yields these results. 

t 

o.i 

0.2 

0..5 

0.8 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

5.5 

6.0 

6.5 

7.0 

7.5 

Deterministic 

X Y 

2.75609 2.75609 

2.52407 

1.89376 

1.35126 

1.03227 

0.36139 

-0.884768 

-1.13151 

-1.32366 

-1.4733 

-1.58983 

-1.68058 

-1.75125 

-1.80629 

-1.84915 

-1.88252 

2.52407 

1.89376 

1.35126 

1.03227 

0.36139 

Stochastic 

E[X] 

2.75627 

2.52555 

1.91664 

1.43044 

1.16837 

-1.13151 

-1.4733 

E[Y] 

2.75627 

2.52555 

1.91664 

1.43044 

1.16837 

0.693114 0.693114 

-0.161063 -0.161063 0.409251 0.409251 

-0.567924 -0.567924 0.247015 0.247015 

-0.884768 0.157059 0.157059 

0.108198 0.108198 

-1.32366 0.0820276 .0820276 

0.0681449 .0681449 

-1.58983 0.0608295 .0608295 

-1.68058 0.0569925 .0569925 

-1.75125 0.0549865 .0549865 

-1.80629 0.0539401 .0539401 

-1.84915 0.0533952 .0533952 

1.88252 0.0531118 .0531118 



46 

8.0 -1.90851 -1.90851 0.0529645 .0529645 

8.5 -1.92875 -1.92875 0.0528879 .0528879 

Perusing these results should quickly show an inconsistency; the 

numbers for the deterministic model become negative. The probability 

of ever being negative for the stochastic model is zero, since this is how 

we modeled the problem. However the numbers remain close until the 

deterministic numbers get close to zero. Also, the behavior is 

practically identical—that is, while the deterministic model shows 

disarmament, the expected values of the stochastic model show that this 

scenario is still the most likely one. The diagrams make this point even 

clearer. 

At t=0.1: 
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At t=0.2, we notice the almost complete downward trend. 

Att=0.5: 

• • • 

At t=l: 
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At t—2, we see that it is highly likely the model is at (0,0). 

At t=3, notice we are even more likely to be at (0,0). 



At t=8, we see that this behavior continues to be the trend. 



50 

• 3.3.4 Total Disarmament or Runaway Arms Race 

This situation is quite different than the others. The end result of the 

deterministic model depends on the initial conditions, the amount of 

arms with which countries X and Y start. This case occurs when yd-afi 

is negative and £ and ?] are negative. We will set the parameters of the 

deterministic model to 

a= 1 p=l 

7 = 0.5 5=0.5 

£ = -1.5 77 = -1.5 . 

The corresponding stochastic parameters are 

a=1 0=1 

7=0.5 6=0.5 

A=1.5 r=0 

k=1.5 p=0. 

Let us look more closely at the deterministic case before comparing it 

to the stochastic version. Four regions are created by the two lines 

formed when each of the differential equations in the system is set 

equal to zero, i.e., the isoclines of the system of differential equations. 
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If the initial point is in the section lower and to the left of the 

intersection of the two lines, then total disarmament will occur. If the 

initial point is in the section above and to the right of the intersection, 

then there will be a runaway arms race. If the initial point is in either of 

the other sections, the model will eventually end up in one of the first 

two sections described depending on where in these sections things 

begin, so that there is disarmament or a runaway race. So, we are left 
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with three subcases to be examined. 

First, we start in the lower, left section. So, country X and country 

Y each have two units of weapons. The results are 

t 

o.i 

0.2 

0..5 

0.8 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

5.5 

6.0 

6.5 

7.0 

7.5 

Deterministic 

X 

1.94874 

1.89486 

1.71605 

1.50832 

1.35148 

0.883397 

0.282397 

-0.489253 

-1.48001 

-2.75209 

-4.38536 

-6.4824 

-9.17488 

-12.6319 

-17.0705 

-22.7694 

-30.0865 

-39.4813 

Stochastic 

Y 

1.94874 

1.89486 

1.71605 

1.50832 

1.35148 

0.883397 

0.282397 

-0.489253 

-1.48001 

-2.75209 

-4.38536 

-6.4824 

-9.17488 

-12.6319 

-17.0705 

-22.7694 

-30.0865 

-39.4813 

E[X] 

1.94973 

1.90151 

1.78591 

1.71498 

1.68454 

1.63867 

1.61339 

1.59756 

1.58699 

1.57973 

1.57466 

1.57107 

1.56853 

1.56672 

1.56543 

1.56451 

1.56385 

1.56338 

E[Y] 

1.94973 

1.90151 

1.78591 

1.71498 

1.68454 

1.63867 

1.61339 

1.59756 

1.58699 

1.57973 

1.57466 

1.57107 

1.56853 

1.56672 

1.56543 

1.56451 

1.56385 

1.56338 



53 

8.0 -51.5436 -51.5436 1.56304 1.56304 

8.5 -67.031 -67.031 1.5628 1.5628 

Notice that the behavior of the numbers is very similar to the straight 

total disarmament case in Section 3.3.3. However, the expected values 

of the stochastic model do not get as close to zero as before. More of 

the probability has gotten "stuck" in the absorbing state. However, this 

case seems that disarmament is the most likely outcome. This outcome 

becomes clearer by considering the graphical representations. 

At t=0.1: 

At t=0.2: 



At t=0.5: 

• • 
• • 

At t=0.8, the more likely outcome is becoming clearer. 



At t=l 

At t=2 
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At t=3: 

Finally at t=8, there is very little change from the situation at t=3.0, but 

the absorbing state is fairly substantial, which may indicate that there is 

a possibility, though small, of having a runaway arms race. 



The second subcase occurs when the initial condition is above and to 

the right of the intersection. So, we will take as a starting point (4,4). 

With this the following results are obtained: 

t 

o.i 

0.2 

0..5 

0.8 

1.0 

1.5 

2.0 

2.5 

3.0 

Deterministic 

X 

4.05126 

4.10514 

4.28395 

4.49168 

4.64852 

5.1166 

5.7176 

6.48925 

7.48001 

Y 

4.05126 

4.10514 

4.28395 

4.49168 

4.64852 

5.1166 

5.7176 

6.48925 

7.48001 

Stochastic 

E[X] E[Y] 

4.06796 4.06796 

4.17805 

4.52421 

4.74684 

4.84002 

4.96612 

5.01622 

5.03497 

5.04078 

4.17805 

4.52421 

4.74684 

4.84002 

4 .96612 

5.01622 

5.03497 

5.04078 
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3.5 8.75209 8.75209 5.04148 5.04148 

4.0 10.3854 10.3854 5.04038 5.04038 

4.5 12.4824 12.4824 5.03885 5.03885 

5.0 15.1749 15.1749 5.03741 5.03741 

5.5 18.6319 18.6319 5.03622 5.03622 

The numbers remain reasonably close until the deterministic model 

goes well out of range from the stochastic model between t=1.5 and 

t=2. We may be able tell more from the graphs. 

At t=0.1, 

At t=0.2, 
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At t=0.5, we see that the absorbing state has already become large. 

• • • 

At t=l, the 

drastically. 

probability of being in the absorbing state has grown 
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At t-2, the probability of disarmament has grown. 

At t=4, the probability of disarmament has grown a bit more. 
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At t=6, the probability of disarmament has grown only slightly. 

So, the most likely result from this subcase is a runaway arms race, just 

like in the deterministic case. However, there is a substantial chance 

that disarmament will occur. 

We are now to the final subcase in this section. Our starting point 
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will need to be either above and to the left or below and to the right. 

Since our parameters are symmetric, two examples from one of these 

sections should be sufficient to show both situations. For the first 

example, we will take (2,3) as the initial values; this point lies in the 

area above and to the left. 

t 

o.i 

0.2 

0..5 

0.8 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

5.5 

6.0 

6.5 

Deterministic 

X Y 

2.04407 2.90468 

2.0771 

2.12198 

2.1037 

2.0643 

.88909 

.61636 

1.24365 

0.75446 

-1.74178 

-3.08772 

-4.81607 

-7.0353 

-9.88473 

2.81775 

2.59408 

2.40462 

2.28718 

.99431 

1.66604 

1.2671 

0.121343 0.12657 

-4.81581 

Stochastic 

E[X] 

2.04517 

2.08534 

2.20308 

2.30336 

2.35183 

2.41819 

2.43905 

2.44168 

0.765531 2.43833 

2.43375 

-0.693916 -0.691448 2.42956 

-1.74062 2.42616 

-3.08717 2.42355 

2.42161 

-7.03518 2.42018 

-9.88467 2.41914 

E[Y] 

2.90486 

2.81995 

2.63792 

2.54663 

2.51423 

2.47534 

2.45853 

2.44817 

2.44046 

2.43375 

2.42978 

2.42623 

2.42357 

2.42161 

2.42018 

2.41915 
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7.0 -13.5433 -13.5432 2.4184 2.4184 

7.5 -18.2406 -18.2406 2.41785 2.41785 

8.0 -24.2718 -24.2718 2.41747 2.41747 

8.5 -32.0155 -32.0155 2.41719 2.41719 

We see in the deterministic case that from this initial point disarmament 

occurs. As we have seen in previous cases, the numbers agree rather 

closely until the deterministic model approaches zero. Also, notice that 

the expected value in the stochastic case remains fairly high. As we 

will see, the reason for this situation is a fair amount of accumulated 

probability that gets stuck in the absorbing state. 

At t=0.1, the situation is 

At t=0.2: 



At t=0.5, 

• • 

• • 

At t=0.8, the absorbing state begins to increase in size. 
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At t=l, the (0,0) disarmament state increases in size. 

At t=2, the trend is to disarmament with a substantial chance of being in 

the absorbing state. 
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At t-4, the trend remains the same but to a greater extent. 

At t=8, we see little has changed. 
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So, the unusually high expected values incommensurate with the 

deterministic model may be attributed to the substantial amount of 

probability in the absorbing state. 

The second example in this subcase has a starting point of (3,4). 

The results obtained are as follows: 

Deterministic Stochastic 

t X Y E[X] E[Y] 

0.1 3.09532 3.95593 3.10603 3.95775 

0.2 3.18225 3.9229 3.23441 3.23441 

0..5 3.40592 3.87802 3.62242 3.98921 

0.8 3.59538 3.8963 3.88642 4.07822 

1.0 3.71282 3.9357 4.00015 4.12604 

1.5 4.00569 4.11091 4.15495 4.19942 

2.0 4.33396 4.38364 4.21502 4.23057 



2.5 4.38364 4.75635 4.23626 4.24159 

3.0 5.23447 5.24554 4.24202 4.24381 

3.5 5.87343 5.87866 4.242 4 .24259 

4.0 6.69145 6.69392 4.24014 4.24033 

4.5 7.74062 7.74178 4.23799 4.23805 

5.0 9.08717 9.08772 4.23607 4.23609 

5.5 10.8158 10.8161 4.23453 4.23453 

6.0 13.0352 13.0353 4.23334 4.23334 

6.5 15.8847 15.8847 4.23246 4.23246 

7.0 19.5432 19.5433 4.23181 4.23181 

7.5 24.2406 24.2406 4.23133 4.23133 

8.0 30.2718 30.2718 4.23099 4 .23099 

8.5 38.0155 38.0155 4.23074 4.23074 

The deterministic model escapes the restrictions of the lattice fairly 

quickly, and the result is a runaway arms race. Similar to previous 

cases, the expected values of the stochastic model agree until the 

determinstic model begins to escape the restrictions of 6 weapons units 

for either country. We will see a reverse case from the last example in 

that most of the probability will end up in the absorbing state, while 

there is still a chance of complete disarmament. 

At t=0.1, 
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By t=0.5, a substantial amount of probability is already in the absorbing 

state. 

• • 

• • • 

By t=l, an even larger portion has gone to the absorbing state. 



By t=2, we see that the (0,0) disarmament has substantially increased. 

This situation remains fairly stable through t=4. 
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At t=8, we see more clearly that this seems to indeed be a stable 

situation. 

So, in this second example we most likely obtain a runaway arms race, 

but there is a substantial possibility of disarmament. 



• 3.4 Conclusion 

We have seen through the above examples that randomization yields 

promising results while the corresponding deterministic model is within 

the bounds of the lattice. When the corresponding deterministic model 

is inside the bounds of the model, the behavior of the stochastic model 

seems to be similar to the deterministic. When the deterministic model 

yields a runaway arms race or disarmament, the stochastic model 

dictates that the indicated outcome is more likely. 

There are many open questions that remain. One problem is to 

obtain a bound on the error in approximating the expected value of the 

stochastic model. Another would be further experimentation with 

larger lattices, which might be possible with the method applied on 

more powerful computing systems. Also, while some efforts were 

made to optimize the computer code, more could be done on this front. 

Though we have applied the randomization technique to the 

stochastic Richardson's model, the technique could be readily applied to 
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a variety of birth-death processes. The computer code is very flexible 

and could be easily adapted for other processes. 



Appendix A 

This appendix contains an explicit expression for the Q matrix on a 

3X3 grid. 

Q = <3i, j , s u c h t h a t 

q i , i = ~P - r 

qi,2 = P 

qi ,3 = o 

qi ,4 = r 

q i , 5 = o 

q i , e = o 

qi ,v = o 

q i , s = o 

q i ,9 = o 

q i , io = o 

q a , i = r + x 

q2,2 = - / 3 - y - x - p - r 

q2,3 = P 



q2,4 = o 

q2,5 = ft + Z 

<12,6 = 0 

q2,7 = o 

q2,s = o 

q2,e = o 

q2,io = o 

q s , i = o 

q3,2 = 2 y + x 

q3 f3 = - 2 / 3 - 2 y - K - p - r 

qs,4 = o 

qs ,s = o 

q 3 , s = 2 £ + r 

q3,7 = 0 

q3,s = o 

qs,9 = o 

<13,10 = P 

q 4 , i = <5 + A 



q4,2 = o 

q4, 3 = o 

q4,4 = -a - 5 - A - p - z 

q4,5 = a + p 

q4,e = o 

q4,7 = r 

q4,8 = o 

q4,9 = o 

q4,io = o 

q s , i = o 

qs, 2 = 6 + A 

q s ; 3 = o 

qs, 4 = r + K 

<15,5 = -OL-/3-Y-5-K-X-P-Z 

qs,6 = a + p 

qs,? = 0 

q5,s = y3 + z 

qs,9 = o 



<35,10 = 0 

i = o 

qe,2 = o 

qe,3 = <5 + A 

qe,4 = o 

qe, 5 = 2 y + K 

<3.6,6 = - 2 fi - 2 y - 5 - k - X - p - z 

qe,7 = o 

qe,8 = o 

qe, 9 = 2 IS + r 

q6,io = a + p 

q7, i = o 

q7,2 = o 

q?,3 = o 

q7,4 = 2 <5 + A 

q7 / 5 = o 

q7,6 = o 

q 7 , 7 = - 2 a - 2 6 - X - p - z 



q7, s = 2 a + p 

qv,9 = o 

<j7,io = r 

qs,i = o 

qs,2 = o 

qs,3 = o 

q e , 4 = o 

qa,5 = 2 <5 + A 

qs,e = o 

qs, 7 = r + JC 

q 8 , 8 = ~ 2 a - l 3 - r - 2 6 - K - X - p - z 

q8,9 = 2 a + p 

<l8,io = j3 + r 

qg,i = o 

qg,2 = o 

qs,3 = o 

q9,4 = 0 

qg,5 = o 



qg,6 = 2 <5 + A 

qg,7 = o 

q9 ,8 = 2 y + k 

q9/9 = - 2 a - 2 / 3 - 2 y - 2 6 - x - A - p - r 

qg,io = 2 a + 2j3+p + i 

qio,i = 0 

qio,2 = o 

qg,3 = 0 

qio,4 = o 

qio,5 = o 

qio,e = o 

qio,? = o 

qio,s = o 

qio,9 = o 

qio,io = o 



Appendix B 

This is Mathematica code that accomplishes a number of things. First, 

the Q-matrix described in chapter 3 is built. The randomization method 

is then applied to this matrix. The expected values for the horizontal 

and vertical directions can be obtained given a starting point and a time. 

Last, the code can generate the graphs from Chapter 3 to visualize the 

probability of being in a state at a given time. 

q= 7; 

Clear [a, /3, y, 6, A, z, x, p] ; 

(* Initialize parameters *) 
a = 1; 
0 = 1; 
Y = 1; 
<5 = 1; 
A = 0; 
z = l; 
x = 0 ; 
P = 1; 

(* Set the number of terms for the power series *) 
taylorterms = 300; 

h[m_, n ] :=<5n + A; (* loss of n-axis *) 
k[m_, n_] : = /3 m + t; (* gain of n-axis *) 
g [m_, n ] := ym + x; (* loss of m-axis *) 
p[m_, n_] := an + p; (* gain of m-axis *) 



f [i_, j_] : = Which [ 

(* very last row of matrix- - nothing 
ever comes out--the master absorbing state*) 

(i == q* q) , 
0, 

(* top left corner of matrix 
-- (0,0) state of the lattice*) 

(i == 0 ) , 

Which[j - i = = q, k[Mod[i, q] , IntegerPart[i/ q] ] , 
j - i == 1, p [Mod [i, q] , IntegerPart [i / q] ] , 
j - i == 0, -(p [Mod [i , q] , IntegerPart [i / q] ] + 

k[Mod[i, q] , IntegerPart[i/ q] ]) , 
True, 0], 

(*bottom right corner of matrix--
last state in lattice-- top row,last state *) 

(i == q* q - 1 ) , 

Which[j - i == -q, h[Mod[i,q], IntegerPart[i/ q] ] , 
j-i==-l, g [Mod [i , q] , IntegerPart [i / q] ] , 
j - i == 0 , - ( h [Mod [i , q] , IntegerPart [i / q] ] + 

k[Mod[i, q] , IntegerPart[i/ q] ] + 
g[Mod[i, q] , IntegerPart [i / q] ] + 
p[Mod[i, q] , IntegerPart[i/ q] ]) , 

j == q*q, (p[Mod[i, q] , IntegerPart [i / q] ] + 
k[Mod[i, q] , IntegerPart[i/ q] ]) , 

True, 0], 

(* bottom row of top left n square of matrix--
last state in the bottom row of lattice*) 

(i == q - 1) , 



Which [ j - i == -1, g [Mod [i , q] , IntegerPart [i / q] ] , 
j - i == 0, - ( p[Mod[i, q] , IntegerPart [i / q] ] + 

k[Mod[i, q] , IntegerPart[i/ q] ] + 
g[Mod[i, q] , IntegerPart [i / q] ]) , 

j - i == q, k[Mod[i, q] , IntegerPart[i/ q] ] , 
j==q*q, p[Mod[i,q], IntegerPart[i / q] ] , 
True, 0], 

(*bottom q block of matrix--
first state of top row in lattice*) 

i == q* (q - 1) , 

Which [j - i == -q, h [Mod[i , q] , IntegerPart [i / q] ] , 
j-i==0, -(h [Mod[i , q] , IntegerPart [i / q] ] + 

p[Mod[i, q] , IntegerPart[i/ q] ] + 
k[Mod[i, q] , IntegerPart[i/ q] ]) , 

j - i = = 1, p [Mod [ i, q] , IntegerPart [ i / q] ] , 
j == q * q, k [Mod [i, q] , IntegerPart [i / q] ] , 
True, 0], 

(*top left q square of matrix--bottom row in lattice*) 
( i < q ) , 

Which[j - i == -1, g[Mod[i,q], IntegerPart[i/ q] ] , 
j - i = = 0 , -(p [Mod [i , q] , IntegerPart [i / q] ] + 

g[Mod[i, q] , IntegerPart[i/ q] ] + 
k[Mod[i, q] , IntegerPart[i/ q] ]) , 

j - i == 1, p [Mod [i , q] , IntegerPart [i / q] ] , 
j - i == q, k [Mod [i, q] , IntegerPart [i / q] ] , 
True, 0], 

(*bottom right q block of matrix-- top row in lattice*) 
i > q* (q - 1) , 

Which [ j - i == -q, h [Mod[i , q] , IntegerPart [i / q] ] , 
j-i==-l, g [Mod [i , q] , IntegerPart [i / q] ] , 
j - i == 0 , - ( h [Mod[i , q] , IntegerPart [i / q] ] + 



g[Mod[i, q] , IntegerPart[i/ q] ] + 
p[Mod[i, q] , IntegerPart[i/ q] ] + 
k[Mod[i, q] , IntegerPart[i/ q] ]) , 

j - i == 1, p [Mod [i , q] , IntegerPart [i / q] ] , 
j = = q*q, k [Mod [i, q] , IntegerPart [i / q] ] , 
True, 0], 

(*last row of each q block of matrix--
last column in lattice *) 

Mod [i , q] == q - 1, 
Which [j - i == -q, h[Mod[i, q] , IntegerPart [i / q] ] , 
j-i==-l, g[Mod[i, q] , IntegerPart [i / q] ] , 
j - i == 0 , - ( h [Mod [ i, q] , IntegerPart [ i / q] ] + 

k[Mod[i, q] , IntegerPart[i/ q] ] + 
g[Mod[i, q] , IntegerPart[i/ q] ] + 
p[Mod[i, q] , IntegerPart[i/ q] ]) , 

j==q*q, p[Mod[i,q], IntegerPart[i / q] ] , 
j - i = = q, k[Mod[i, q] , IntegerPart[i/ q] ] , 
True, 0], 

(*first row of each q block of matrix--
first column in lattice*) 

Mod[i , q] == 0 , 
Which [j-i==-q, h [Mod [i, q] , IntegerPart [i / q] ] , 
j - i == 0 , -(h [Mod [i , q] , IntegerPart [i / q] ] + 
k[Mod[i, q] , IntegerPart[i/ q] ] + 
p[Mod[i, q] , IntegerPart[i/ q] ]) , 

j - i = = 1, p [Mod [ i, q] , IntegerPart [ i / q] ] , 
j - i = = q, k [Mod [ i, q] , IntegerPart [ i / q] ] , 
True, 0] , 

(* everything else *) 

j - i == -q, h [Mod [i , q] , IntegerPart [i / q] ] , 
j-i==-l, g [Mod [ i , q] , IntegerPart [ i / q] ] , 
j - i == 0, - ( h [Mod [i, q] , IntegerPart [i / q] ] + 

k[Mod[i, q] , IntegerPart[i/ q] ] + 
g[Mod[i, q] , IntegerPart[i/ q] ] + 



p[Mod[i, q] , IntegerPart[i/ q] ]) , 
j - i = = 1, p [Mod [ i , q] , IntegerPart [ i / q] ] , 
j - i == q, k [Mod [i , q] , IntegerPart [i / q] ] , 
True, 0] ; 

(* the Q matrix for randomization *) 
Q = Table [f[i, j], {i, 0, q*q}, {j, 0, q*q}] ; 

(* maximum 
of the absolute value of the diagonal of the Q-matrix*) 

m=Max[Table[Abs[f[i, i] ] , {i, 0, q*q}]]; 

(* the P matrix for randomization *) 
P = Q / m + IdentityMatrix [q * q + 1] ; 

(* create a list of increasing 
powers of P for the powers series expansion *) 

B = {IdentityMatrix [q* q + 1] , P} ; 
NewP = P; 
For[i = 1, i < taylorterms, i = i + 1, 
NewP = NewP . P ; 
B = Append [B, NewP] ;] ; 

(* the result of randomization- - a time-
dependent approximation! of a funcion that 
yields transition probabilities for time t *) 

taylorterms s j_s 

F [ t ] := e~m * -m t 
s! s = 0 

(* use variable A to hold specific values for F[t] *) 
A = F[0 . 5] ; 



(* use "correct row " to hold the row number in 
A representing the correct strating state *) 

convertinitial [x_, y_] : = y*q + x + l; 
correctrow = convertinitial[1, 2] ; 

(* horizontal expected value m-direction *) 
q*q 

N Mod [ j - 1, q] * A [ [correctrow] ] [ [ j ] ] + 
j=i 

q * A[[correctrow] ] [[q * q + 1]]] 

(* vertical expected value n-direction *) 
q*q+l 

N [ ̂  IntegerPart [(j-l)/q]*A[[ correctrow] ] [ [ j ] ] ] 
j=i 

(* sum the row to check and see if this is 1-- if this is 
not one more terms are needed in the power series *) 
q*q+l 

N[ ^ A [ [ c o r r e c t r o w ] ] [ [ j ] ] ] 
j=i 

(* produce the diagrams seen in chapter 3 *) 
printout = {}; 
For[i = 0, i<q*q, i = i + l , 
printout = Append[printout, 

AbsolutePointSize[80 * (A [[correctrow]] [[i + 1]])]]; 
printout = Append[printout, 

Point[{Mod[i, q] , IntegerPart[i / q] }]]; ] 
printout = Append[printout, 
AbsolutePointSize [80 * (A [ [correctrow] ] [ [q * q + 1] ] ) ] ] ; 

printout=Append[printout, Point[{q+l, q/2}]]; 
Show[Graphics[printout] , 
PlotRange -> {{-0.75, q + 2}, {-0.75, q-0.25}}] 



Appendix C 

This is Mathematica code that implements the Euler method for the 

deterministic Richardson model. 

Clear [x, y, a, /3, y, <5, g, 77] 
X = 2 ; 

y - 2 ; 

a = 1; 
0 = 1; 
r = 0 .5 ; 
6 = 0 . 5 ; 
£ = - 1 . 5 ; 
1 = - 1 . 5 ; 

At = 0.001; 
steps = 2000; 
For[i = 0, i < steps, i = i + 1, 
newx = x + (ay-yx + J) At; newy = y + (/3 x - <5 y + J7) At; 
x = newx; y = newy;] 

x 
y 
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