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Summary. Estimating the burden of infectious disease is complicated by the general tendency
for underreporting of cases. When the reporting rate is unknown, conventional methods have
relied on accounting methods that do not make explicit use of surveillance data or the tempo-
ral dynamics of transmission and infection. State space models are a framework for various
methods that allow dynamic models to be fit with partially or imperfectly observed surveillance
data. State space models are an appealing approach to burden estimation as they combine
expert knowledge in the form of an underlying dynamic model, but make explicit use of surveil-
lance data to estimate parameter values, to predict unobserved elements of the model, and to
provide standard errors for estimates.

1. Introduction

The estimation of the national and global burden of infectious diseases is essential for setting
future targets and funding priorities, as well as evaluating the impact of public health
measures (Stein et al. (2003),Wolfson et al. (2007)). The problem of burden estimation,
however, is complicated by a paucity of detailed surveillance data and a general tendency
for under-reporting of cases (Dabbagh et al. (2007)). Many of the methods that have been
developed for estimating disease burden have been based on an informal combination of
expert opinion, in the form of either a static or dynamic epidemic model and surveillance
data, when available (Stein et al. (2003),Wolfson et al. (2007), Crowcroft et al. (2003)).
Here we discuss a formal combination of epidemic dynamics with surveillance data using a
state space model to provide prediction and bounds for the annual burden of measles based
on annual reporting of disease at the national scale.

The global reduction of the burden of morbidity and mortality due to measles is a
triumph of modern public health (Wolfson et al. (2007)). Immunization programs focused
on routine delivery of measles vaccine and supplemental pulsed campaigns have led to
a greater than 85% reduction in global measles mortality since 1980. However, measles
remains a leading cause of vaccine-preventable death in children under 5 years in much of
the world. Each year, significant resources are allocated to measles vaccination through
the World Health Organization (WHO) Expanded Programme on Immunization and the
supplemental vaccination campaigns at the country level. Setting goals for vaccination
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programs, allocating resources, and evaluation of program success are all complicated by
the inherent challenge of assessing the burden of measles disease and mortality at both the
national and global level.

Measles cases are routinely reported at the national level for the 193 WHO member
states each year. It is generally assumed, however, that these reports represent a severe
under-reporting of true measles incidence. As such, programmatic decisions tend to be made
based on estimated or corrected estimates of measles incidence (Stein et al. (2003),Wolfson
et al. (2007)). In countries where the available measles surveillance is unreliable, estimates
of measles burden have been calculated using so-called natural history methods, which
combine the available demographic (population size and birth rate) and vaccination data
(timing and coverage) to arrive at estimates of the unobserved true incidence (Stein et al.
(2003),Wolfson et al. (2007), Crowcroft et al. (2003)). Natural history models for disease
burden suffer from two major shortcomings. First, they often require ad hoc methods to
arrive at confidence intervals for burden. Second, there is no clear connection between
the estimated value and the numbers reported by national surveillance programs. Here
we present a method to combine a standard natural history type model for estimating the
incidence of measles with the annual reported incidence data at the national level in the
context of a state space model.

State space, or hidden Markov, models are a framework for methods that fit dynamic
models with partially or imperfectly observed data (such as under-reported surveillance
data). State space models are characterized by two inter-related parts: a state equation
and an observation equation. In the terminology of these methods, the state of the system,
X , varies in time according to a mathematical expression describing the evolution from the
previous time step, f(X), that is governed by a set of unknown parameters. The observed
data, Y , are (possibly transformed) measures of the states through time, which might
contain some observation error. This transformed measure of the state, g(X) describes the
expected relationship between the unobserved states, X , and the observed data Y . If the
state model is a Markov process, such that the value of the states at time t depend only on
the value of the states at time t− 1, then we can more easily carry out statistical inference
on the parameters and predict the unknown states based on the conditional probability
densities hS(Xt|Xt−1) and hO(Yt|Xt) given the system parameters.

The primary example of a state space model is the Kalman filter or linear state space
model. The original application of such models was to identify the system states given the
observations in the case of a known system. However, in a variety of contexts the goal
of using such a model may be to infer the parameters of the full system such as in the
estimation of ARMA process (Brockwell and Davis (1991)). For the goal of estimating
disease burden, we are interested in first estimating parameters of the underlying state
and observation models to enable us to predict the states themselves (i.e. the unobserved
incidence of disease). Other authors have such as Breto et al. (2009) and Ionides et al.
(2006) have given a more modern approach to fitting these models by using methods such
as particle filters and computational Bayesian techniques; however, a large gap remains
between these methods and what is done in practice. One goal of the present work is
to take a simple approach that continues to be in the more general framework of these
more modern approaches, i.e. filtering, yet may be more accessible to many practitioners.
In addition, we will demonstrate that our simpler approach is comparable to these more
computationally intensive methods.

Here we present a specific application of state space modeling to predict unobserved
measles burden from under-reported national case reporting. In the sections below, we first



State Space Models for Measles Burden 3

describe the basic state model for the progression of measles cases through time and then
discuss an algorithm for predicting the unobserved incidence using the extended Kalman
filter (EKF) and potential extensions to these methods. We then explore the performance of
this algorithm on simulated data and provide examples of the application to real surveillance
data.

2. A Model for Measles Burden

The relatively simple natural history of measles is well described by a family of non-linear
epidemic models known as susceptible-infected-recovered (SIR) models (Anderson and May
(1991), Bjornstad et al. (2002)). The population is divided into 3 compartments comprising
individuals who are susceptible (S) after birth and eventually become infected (I), and then
following a period of approximately 2 weeks, recover (R) and are immune to subsequent
infection. The transmission of infection between infectious and susceptible individuals is an
often complex, non-linear function of the contact process between individuals (McCallum
et al. (2001). However, the epidemic dynamics of measles for a variety of settings (Ferrari
et al. (2008), Bjornstad et al. (2002), Anderson and May (1991), Metcalf et al. (2009)) are
well represented by a simple set of coupled ordinary differential equations:

dS

dt
= αN − βtS

I

N
− µS

dI

dt
= βtS

I

N
− γI − µI

dR

dt
= γI − µR

(1)

where β is the transmission rate (which may vary seasonally),γ is the recovery rate (here
1/14), α is the birth rate, µ is the mortality rate, and N is the total population size.
Vaccination is targeted at young children and is dynamically equivalent to a reduction in
the effective birth rate.

A key feature of SIR models is the phenomenon of herd immunity (Anderson and May
(1991)). That is, the per capita transmission rate is positively related to the proportion
of the population that is susceptible. Thus, when the proportion of the population that
is susceptible falls low enough, the per capita transmission rate falls below 1 and the pop-
ulation is said to be at herd immunity: i.e. infection cannot spread in the population.
As a consequence, infection tends to occur in epidemics, which extinguish themselves as
the population becomes increasingly immune. Subsequent outbreaks then occur when the
susceptible population is sufficiently replenished by births.

At the annual time scale, we can write the number of susceptibles at year t as the
susceptibles in the previous year, minus those that became infected, plus the birth cohort.

St = St−1 − It−1 +Xt (2)

Here the birth cohortXt is the total number of births, Bt, minus those that were vaccinated.
The efficacy of the measles vaccine is approximately 0.85 with a single dose and 0.99 with
two doses (Uzicanin and Zimmerman (2011)). Thus, if V 1t and V 2t are the vaccine coverage
with one and two doses respectively at time t, then the non-immune birth cohort at time t
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is
Xt = Bt(1− 0.85V 1t(1 − V 2t)− 0.99V 1tV 2t) (3)

The number of individuals that become infected in year t is the number that were suscep-
tible, St, times an annualized infection rate β. Thus we can rewrite 2 as

St = St−1 − βt−1St−1 +Xt (4)

Of course, from the SIR model above, the annualized infection rate is likely to be a compli-
cated function of the contact pattern and the level of susceptibility in the population. We
propose to model βt as an increasing function of the proportion of the population that is
susceptible St/Nt, which phenomenologically reflects the behavior of herd immunity in the
standard SIR model. Thus we write equation (4) as

St = St−1 −
(

1− exp

(

−θ1
St−1

Nt−1

))

St−1 +Xt (5)

The annualized infection rate goes to 0 as the proportion of susceptibles declines and
increases to 1 in a fully susceptible population at a rate governed by the parameter θ1. Note
that measles is highly infectious and the classic SIR models would predict that > 95% of
individuals would become infected in a naive (i.e. fully susceptible) population (Anderson
and May (1991)). Thus the assumption that the annualized infection rate goes to 1 is
not unjustified. Routinely, large-scale vaccination campaigns are conducted to supplement
routine vaccination programs. These campaigns are designed both to provide an opportunity
for a second dose in areas where only one routine dose is available, and to provide an
opportunity for a first dose in areas where routine coverage is low. As such these campaigns
reduce the total susceptible pool, rather than just the birth cohort. If the coverage for
such a campaign in year t is Yt, then the entire susceptible pool in the subsequent year is
reduced,

St = [St−1 −
(

1− exp

(

−θ1
St−1

Nt−1

))

St−1 +Xt](1 − Yt−1) (6)

and the number of incident cases in each year is

I(t− 1) =

(

1− exp

(

−θ1
St−1

Nt−1

))

St−1 (7)

To initiate the model, we need the number of susceptible individuals prior to the first
observation. As this is generally not known, we set S0 = θ2N0, where θ2 is the initial
proportion of the population that is susceptible to measles, and N0 is the population size
at that time. National reports of measles cases are generally negatively biased as not all
infected cases present with severe enough symptoms to seek medical care. We assume that
there is time invariant, under-reporting of cases such that the expected number of cases at
time t is Ct = θ3It.

3. Inference Using State Space Models

We now have a plausible model for the evolution of the number of susceptibles and the
number of infections given several input variables such as the number of births and childhood
vaccination coverage, which together give Xt above, the population size, and the year and
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coverage of pulsed vaccination campaigns and parameter values. How then can we infer the
parameter values and also predict the true number of infections given the reported number
of infections and the input variables? In some ways we would like to regress the number of
infections on the input variables; however, the number of reported infections is a function
of susceptibles instead of being directly dependent on the system parameters. We can treat
the number of susceptibles as a hidden variable, important to the system but essentially
not observable.

We write the model then as follows. The observation equation is

Ct = θ3

(

1− exp

(

−θ1
St−1

Nt−1

))

St−1 + ǫt (8)

and the system equation is given as

St = [St−1 −
(

1− exp

(

−θ1
St−1

Nt−1

))

St−1 +Xt](1− Yt−1) + ηt, (9)

where ǫt and ηt are independent in time and with respect to one another, Gaussian random
variables with mean 0 and variance θ24 and θ25 respectively.

3.1. State Space Models
We start with a brief discussion of state space models which will form the basis of our
approach to parameter estimation. Linear state space models have a history dating back to
the 1960’s and are commonly used to estimate parameters in discrete index, Gaussian time
series (Harvey and Phillips, 1979; Brockwell and Davis, 1991). A closely related concept to
the linear state space model is the Kalman filter. A filter in this context is the conditional
density of the state of a system (St in our case) at time t given the observed part of the
system up to time t (C1, ..., Ct). If we assume that the system is Gaussian, as we do in the
linear setting, then the conditional mean (which we denote by Ŝt) and variance (which we
denote by Pt) is sufficient to describe that density. In addition to the filter, a smooth may
also be calculated where all of the observed values both past and future states are used to
predict St.

Not only does the calculation of the Kalman filter allow us a “best guess” for the state
at time t given the observations through the conditional expectation, evaluation of the filter
provides the value of the likelihood function of the system for a given set parameter values.
This later fact will allow us to use the Kalman filter to numerically optimize this likelihood
function to give maximum likelihood estimators for the parameters. As the proposed model
for measles burden is non-linear (equation 9), we will use a standard linear approximation
approach to the non-linear system in order to fit our proposed model; known as the extended
Kalman filter (Elliott et al. (1995)). Since there are a number of excellent resources for linear
state space models, we omit the details and direct the reader to Shumway and Stoffer (2000),
Brockwell and Davis (1991), or Elliott et al. (1995) for more details.

The extended Kalman filter (EKF) makes two important simplifications

(a) That the use of a linear approximation to the non-linear state model will not severely
bias the estimates, and

(b) That the error process is Gaussian.
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Clearly, the second assumption does not represent the observation process well; observations
are restricted to whole numbers, greater than zero and more likely to be either binomial or
Poisson. However, in practice it is unclear the relative impact of these two assumptions on
estimation of the state variables.

Below, we will compare the EKF to two alternate particle filter approaches to quantify
the impact of the simplifications. By using particle filters to approximate the likelihoods,
we can both simulate directly from the non-linear state model and assume a non-Gaussian
observation model. One comparison will assume the same underlying model as the EKF,
but approximate the filter and thus the likelihood function using Monte Carlo as opposed to
a linearization. The other comparison will contrast the EKF with a particle filter technique
using a binomial error distribution. When using the particle filters, we will use a Bayesian
framework to estimate the parameters. The reason for this is computational; while the
particle filters allow us to evaluate the approximate likelihood function in a different way,
optimization over quantities that include Monte Carlo sampling error can be difficult.

Another advantage of state space models in general is the simplicity of handling missing
data. The state space framework allows for prediction for future values of the underlying
system, St in this context. Since there is no additional observation error, then there are
obvious ways to update the filter. For a more detailed account. For example, see Brockwell
and Davis (1991). For the input variables, we also encounter missing values. However, since
we are viewing these as exogenous deterministic quantities, we use linear interpolation to
handle these missing values.

3.2. Estimation and Prediction
Using the extended Kalman filter, we can then calculate an approximate likelihood function
of our time series for a given set of parameter values. Our system has five parameters, and
non-linear optimization even over so few parameters can be difficult (see the Appendix
for detailed discussion of the algorithm we used). It is worth noting here that there are
modern methods that allow for a possibly more precise calculation of the likelihood using
simulation based methods (See Breto et al. (2009) and Ionides et al. (2006)), and we will
use these as a comparison. However, one goal of this project was to design a method
that was sufficiently tractable to be used by policy makers. Thus, we propose a method
that requires only evaluation of the likelihood, rather than approximation of the likelihood
through simulation, which may be computationally quite intensive; we provide a comparison
to simulated particle filters below.

In our example, estimating the variance parameters of the random perturbations proved
to be delicate. Through simulation studies we discovered that naive optimization using a
quasi-Newton method (Byrd et al. (1995)) would cause either one or the other variance
parameter to go to zero. By plotting the likelihood surface for those two parameters we
saw that a particular geometry gave rise to such a situation (Figure 1).

When using the linear Kalman filter, there is a simple expression for the likelihood
estimator of the variance of the observation error if we could observe the entire system

σ̂2
w =

1

n

n
∑

t=1

(Ct − gŜt)
2 + g2Pt,

where Ŝt is the one step ahead predictor for St and Pt is the one step ahead prediction
error. (This can obviously be modified for the EKF.) If this were the only unknown param-
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Fig. 1. Example profile negative log likelihood surface for the process (x-axis) and measurement (y-
axis) components for an example dataset (Nigeria, see below). Shading (dark is large) and contours
give negative log likelihood .
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eter, we could perform a simplified EM algorithm to estimate this by alternating between
evaluating the smoother and obtaining this estimate for σ2

w and using this estimate in the
next evaluation of the smoother.

By doing this, we optimize the likelihood over σ2
ǫ using non-linear numerical optimiza-

tion, but for each evaluation of the likelihood we estimate the variance of the observation
equation using the above method. Moreover, we have found that the estimation of the
other parameters are somewhat robust to the values of the variance parameters. So, we
first estimate the non-variance estimators. Then, optimize over the variance parameters
and iterate until convergence. In practice, only a few iterations are needed for convergence.
One of the benefits of likelihood (or more accurately in this case approximate likelihood)
estimation is the ability to obtain approximate standard errors by evaluating the hessian of
the log likelihood function at the optimal point.

As previously discussed, estimating the parameters is a necessary step for our primary
goal of predicting the true number of incident cases in the population. This was given in
equation 7 and is a function of the number of susceptibles for which our method gives a
prediction, Ŝt, for each time. Moreover, our proposed method also has a prediction variance
implying that we have an approximate 95% prediction interval of

(

Ŝt + z0.025
√

Pt, Ŝt − z0.025
√

Pt

)

where z0.025 is the 2.5th percentile of a standard normal distribution.
Since the incident cases is an increasing, invertible function (over the relevant range) of

Ŝt−1, we can transform this interval to the corresponding interval for It. For simplicity we
define this increasing function as

It = h(St−1) =

(

1− exp

(

−θ1
St−1

Nt−1

))

St−1

Then, we can write the prediction interval for It as

(

h
(

Ŝt + z0.025
√

Pt

)

, h
(

Ŝt − z0.025
√

Pt

))

4. Examples

4.1. Application to Measles Surveillance Data
To illustrate the application of the EKF to annual surveillance data we applied the method
to annual time series of measles incidence from 1980 to 2007 for 4 countries: Nigeria,
Bolivia, Cambodia, and Pakistan (Figure 2). We chose these 4 countries to reflect a range
of dynamics from highly endemic measles in Nigeria, to Bolivia, where measles has been
largely extirpated through vaccination; thus these examples cover a full range of dynamic
behavior as well as demography and vaccination history. All member states of the WHO
are requested to report their annual cases counts and vaccination coverage for diseases and
vaccines included in their national immunization program (WHO (2009a)), and data are
available at (WHO (2009b)).

In practice, we first apply the optimization algorithm (above) to estimate the parameters
θ1 through θ5 for each country (Table 1). Given those parameter estimates, we apply the
EKF at the estimated parameter values to produce predictions of the unobserved time
series of susceptibles, Ŝt, and the associated variances Pt. We construct approximate 95%
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Table 1. Parameter estimates for 4 example countries.
Parameter θ1 θ2 θ3 log(θ4) log(θ5)
Nigeria 5.02 0.20 0.03 20.0 21.6

Bolivia 1.34 0.50 0.01 25.0 14.3

Cambodia 1.0 0.50 0.05 22.6 18.65

Pakistan 79.0 0.01 0.005 19.9 19.1

prediction intervals for the susceptible time series as Ŝt±z0.025
√
Pt. We can then transform

the predictions and bounds for the unobserved susceptibles into predictions and intervals for

the unobserved measles cases using the transformation It =
(

1− exp
(

−θ̂1
St

Nt

))

St; where

θ̂1 is the maximum likelihood estimator of θ1.
One of the reasons for using maximum likelihood is to reduce bias and to use the standard

errors derived from the maximized likelihood; however, we are far from the asymptotic
regime. To gauge the reliability of standard errors, we simulated 10000 iterations of the
fitted, annual model (e.g. equations 8 and 9), using the observed levels of population
size and vaccination as covariates from the 4 countries described above: Nigeria, Bolivia,
Cambodia, and Pakistan. For each of the simulated iterations, we fit the model (above)
using the EKF and compare the resulting fitted parameter values to the true values. For
all 4 example countries, the estimates of θ1 tend to be positively biased, and in 3 of the
4 example countries (Cambodia, Nigeria, and Pakistan) the estimates of θ2 tended to be
negatively biased (Figure 3). However, the observation rate, θ3 was in general well estimated
and the variation in the estimates was comparatively low (Figure 3).

4.2. Performance on Simulated Data
Clearly, measles transmission dynamics occur on a much faster scale than the 1-year time
step of the process model described above. The unobserved epidemic process is assumed
to follow the TSIR epidemic model, which has been previously shown to replicate measles
dynamics well for a variety of settings (Bjornstad et al. (2002), Ferrari et al. (2008), Metcalf
et al. (2009). Previous methods have been proposed to estimate under reporting (Finken-
stadt and Grenfell (2000)) or fit a full state-space model (Morton and Finkenstadt (2005))
with bi-weekly surveillance data. However, in practice, such highly resolved data are only
available for a handful of settings, and large-scale burden estimation must be based on
annual surveillance. Thus, a more rigorous test of the method is its ability to estimate
incidence from dynamics that are simulated at the bi-weekly scale, but aggregated at the
annual scale to reflect the true observation process. Let It, be the true number of newly
infected individuals at time step t, and St the true number of susceptible individuals. It+1

depends stochastically on the number of infectious and susceptible hosts at time t such that
It+1 ∼ binomial(St,1 − exp(−βtI

α
t )), where βt is the time-specific transmission rate and α

is a parameter to account for non-linearities in transmission. The transmission rate, βt, was
assumed to be a sinusoidal function of time (βt = 20(1+ .2cos(2πt/26))) to account for the
commonly observed seasonality in measles transmission. We chose a value of α = 0.97 which
is consistent with the range seen for a variety of settings (Bjornstad et al. (2002), Ferrari
et al. (2008)). We use a time step of two weeks, which is the average infectious generation
time (the time from infection to recovery and immunity) for measles. New infections are
drawn from the pool of susceptible individuals, which is, in turn, replenished by births.
Thus, the number of susceptibles at time t is given by St+1 = St−It+1+(1−Vt)Bt, where
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Fig. 2. Filtered state estimates of the unobserved measles cases for 4 example countries. A) Nigeria,
B) Bolivia, C) Cambodia, D) Pakistan. Black curves give the reconstructed estimate, the shaded
grey region indicates an approximate 95% prediction region. The circles in each panel indicate the
reported measles cases divided by the estimated reporting fraction.



State Space Models for Measles Burden 11

Nigeria

lo
g

 e
s
ti
m

a
te

−
1

0
0

1
0

2
0

3
0

theta1 theta2 theta3 theta4 theta5

Bolivia

lo
g

 e
s
ti
m

a
te

−
1

0
−

5
0

5
1

0
1

5
2

0
2

5

theta1 theta2 theta3 theta4 theta5

Cambodia

lo
g

 e
s
ti
m

a
te

−
1

0
0

1
0

2
0

theta1 theta2 theta3 theta4 theta5

Pakistan

lo
g

 e
s
ti
m

a
te

−
1

0
−

5
0

5
1

0
1

5
2

0

theta1 theta2 theta3 theta4 theta5

Fig. 3. The distribution of log parameter estimates for 10000 simulated time series based on the
fitted values for the 4 example countries. Boxes indicate the central 50% of estimates, whiskers
extend to the range of estimates. A)Nigeria, B) Bolivia, C) Cambodia, D) Pakistan. The grey circles
indicate the true value of each parameter in the simulation.
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Bt is the number of births and Vt is the proportion of the birth cohort that is vaccinated.
We conducted these simulations under a large and small country sceniario. For the former
we assumed that the population size, and birth rate were the same as for Nigeria: total
population of 50 million, and 3406000 births per year, equally distributed throughout the
year. For the latter we assumed a population with 10% of Nigeria’s population size and
annual births. Simulations were run for 56 years, with only the incidence in the second half
of the time series uses for estimation. Annual vaccination coverage was assumed to be 50%
for the first 28 years of simulation. Vaccination increased linearly from 50% to 80% in years
29-43 and was held constant at 85% for the final 14 years to mimic the trend of increasing
vaccine coverage seen in many countries around the world (Figure 4 A).

The true number of infected cases in each year, Iyear, of the simulation was the sum of
the 26 2-week periods in the year. Reported cases in any given year were then assumed to
be under-reported at a rate pt, where pt is a beta distributed random variable with mean
θ3 and variance θ5. We simulated 5000 iterations of the bi-weekly model at each of 5 levels
of observation rate, θ3, ranging from 0.05 to 0.25 and corresponding variances, θ5 = 0.01θ3.
For each we fit the EKF model to evaluate the estimates of the true number of cases and
reporting rate.

The annual state space model appears to provide reasonably unbiased predictions of the
unobserved time series of cases generated from the bi-weekly model, even under a range
of observation rates (Figures 4 and 5). The estimated reporting rate trends positively
with the true reporting rate, θ3 (Table 2). The variance in residuals between the true and
reconstructed time series tends to increase with lower reporting rate. The large residuals in
the early part of the time series reflect the uncertainty in the initial state values. Thus, for
application to burden estimation, it is advisable to use time series with observations earlier
than the period of interest so that the uncertainty due to initial conditions is resolved by
the time period of interest.

We further compared the prediction of true cases and reporting rate from the EKF to
those from a) a particle filter with Gaussian system and observation model corresponding
directly to the EKF and b) a particle filter with a Gaussian system model and a binomial
observation model where the observation rate in any given year is a beta distributed random
variable with constant mean (i.e. the same form as the simulation model). The comparison
to the former allows us to evaluate the impact of the linear approximation to the process
model made in the EKF because, in the particle filter, the state model is simulated directly
from the underlying non-linear model (equation 9). The comparison to the latter allows
us to evaluate the impact of the assumption of a Gaussian observation model. As the
implementation of the particle filters is computationally intensive, we compare the fits
using 500 simulated time series. The implementation of the particle filters is described in
Appendix.

While the transmission parameter for the 2-week model and annualized model are not
directly comparable (due to the differences in model structure) we can directly compare
the estimated reporting rate from the EKF and the particle filters to the true value from
the simulations (Table 2 ). For both the small and the large population simulations the
estimated reporting rate appears accurate for simulations with reporting rate ranging from
0.05 to 0.25. Over 500 simulated time series the variance in the estimated reporting rate was
largest for the EKF and smallest for the binomial particle filter (Table 2). We calculated the
sum of the absolute differences between the true time series of incidence to the reconstructed
time series of incidence from the EKF, the Gaussian particle filter, and the binomial particle
filter. For the large population simulations, under all three fitting methods, the sum of
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Fig. 4. A. A typical realization of the annual reported measles cases from one run of the large-
population simulation, with 10% reporting. B-F. The distribution of the residuals between the true
number of measles cases and the reconstructed values of from the EKF shown as a function of the
time point in the simulation. Each boxplot shows the distribution from 5000 simulation runs. The
panels B-F give the results of simulation runs at 5 levels of the reporting rate, θ3, ranging from 0.05
to 0.25. Boxes show the central 50% of residuals, solid circles give the central 95% of residuals, and
dashes give the range.
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Fig. 5. A. A typical realization of the annual reported measles cases from one run of the small-
population simulation, with 10% reporting. B-F. The distribution of the residuals between the true
number of measles cases and the reconstructed values of from the EKF shown as a function of the
time point in the simulation. Each boxplot shows the distribution from 5000 simulation runs. The
panels B-F give the results of simulation runs at 5 levels of the reporting rate, θ3, ranging from 0.05
to 0.25. Boxes show the central 50% of residuals, solid circles give the central 95% of residuals, and
dashes give the range.
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Table 2. Estimated reporting rate for the large and small populations using the EKF, the
Gaussian particle filter (PF), and the binomial PF for time series generated under the bi-
weekly model. Values in brackets are 95% confidence intervals for the EKF and the 0.025 and
0.975 quantiles of the posterior distribution for the PF examples.

True Reporting Rate
0.05 0.10 0.15 0.20 0.25

large population

EKF 0.051 0.094 0.145 0.195 0.254
(0.04-0.06) (0.06-0.12) (0.10-0.16) (0.15-0.23) (0.23-0.28)

Gaussian PF 0.049 0.098 0.147 0.194 0.245
(0.04-0.06) (0.08-0.11) (0.13-0.17) (0.17-0.22) (0.22-0.27)

Binomial PF 0.051 0.10 0.15 0.198 0.247
(0.04-0.06) (0.09-0.11) (0.13-0.16) (0.18-0.22) (0.23-0.27)

small population

EKF 0.051 0.093 0.145 0.196 0.254
(0.04-0.06) (0.06-0.12) (0.10-0.17) (0.156-0.228) (0.22-0.28)

Gaussian PF 0.049 0.098 0.147 0.196 0.245
(0.04-0.06) (0.08-0.11) (0.13-0.17) (0.17-0.22) (0.22-0.27)

Binomial PF 0.048 0.093 0.140 0.185 0.229
(0.03-0.07) (0.07-0.14) (0.11-0.20) (0.14-0.27) (0.22-0.28)

absolute difference between the true and predicted time series decreased for higher reporting
rates (Figure 6A). Across all levels of reporting, the sum of absolute difference was lower
for the two particle filter methods, and the distribution of the sum of absolute difference
was indistinguishable between the two particle filter methods (Figure 6A). This suggests,
that some precision is lost when using the EKF as a result of the linear approximation, but
very little precision is lost by approximating the observation error process as Gaussian. The
results were similar when the three methods were used to fit the annualized model to data
simulated from a population of 10% the size. One relevant difference was that, in the small
population simulations, the binomial particle filter tended to under-estimate the reporting
rate (Table 2). This led to a consequent bias in the estimated true incidence and a slightly
higher sum of absolute error (Figure 6B). In the application of the binomial particle filter,
simulated values of the true incidence that were lower than the observed incidence have
non-finite likelihood weights. As such, the binomial observation model results in severe
particle depletion which may result in this slight bias. It is possible that this could be
overcome with much larger computational effort (i.e. increasing the number of particles).

5. Conclusions

In many applications, surveillance data are analyzed with the goal of conducting inference on
the underlying dynamics; i.e. the parameters of the state model (Ferrari et al. (2008), Breto
et al. (2009), Cauchemez et al. (2008) ). In that setting, the unobserved states are treated
as nuisance parameters. The problem of burden estimation is peculiar in that inference
on the unobserved states is the end goal, and we integrate over our uncertainty in the
underlying model parameters. The current, natural history based methods for estimating
disease burden also make use of an underlying model, but make the implicit assumption
that the parameters of that model are fixed and known (Stein et al. (2003), Wolfson et al.
(2007) ). Thus, statements of uncertainty in burden estimates rely on ad hoc incorporation
of variation to account for parameter uncertainty (i.e. see Wolfson et al. (2007) ). The key
benefit of state space models is that they provide a transparent and repeatable framework
for calculating uncertainty in the prediction of the unobserved states and in the estimation of
the underlying model parameters. And, because the state space model is rooted in observed
surveillance data, the resulting estimates are not dependent on subjective statements of
parameter uncertainty.

The model we have presented here performs well at reconstructing the broad-scale trends
in annual incidence, though fails to account for some of the fine scale dynamics seen in the
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Fig. 6. The distribution of the sum of absolute errors between the true annual cases and the pre-
dicted annual cases from the EKF (solid line), the Gaussian particle filter (dashed line), and the
binomial particle filter (dotted line) for simulations from A) the large population setting and B) the
small population setting. Panels from left to right correspond to simulations with observation rates
0.05, 0.10, 0.15, 0.20, 0.25 respectively.



State Space Models for Measles Burden 17

bi-weekly model. The estimator of the reporting rate, θ3 was generally unbiased and had
low standard error. While the EKF is computationally more tractable to apply, it does come
a cost of slightly reduced precision in the estimates. The Gaussian particle filter, which does
not make a linear approximation to the process model, and the binomial particle filter, which
does not make the linear approximation and uses the true observation model, resulted in
slight improvements in the precision of the estimate of the reporting rate and the uncertainty
in the estimates of the unobserved time series of incidence cases. Thus, for evaluating large
scale trends in measles incidence at the national or global scale, the EKF provides accurate
estimates of the reporting rate and predicted unobserved annualized incidence despite the
linear approximation and the assumption of Gaussian error in the observation model.

These annualized models are likely too coarse to capture the underlying non-linear dy-
namics that give rise to the complex behavior that is often seen in fine scale models of
measles dynamics (Earn et al. (2000)). Thus, it is difficult to make a direct comparison
between the annualized transmission function and the fine-scale transmission rate in the
two-week model. In particular, given the seasonal nature of measles transmission (Ferrari
et al. (2008), Bjornstad et al. (2002)) it may be challenging to disentangle the impact of sea-
sonal variation in transmission relative the mean transmission rate without data at a finer
resolution. While it is possible to fit a fine-scale model using analogous state-space models
(Ferrari et al. (2008), Breto et al. (2009), Cauchemez et al. (2008) ) to annualized data, it
is uncertain what the use of fine-scale models would add to the estimation of burden. Fine-
scale models are clearly important for the goal of understanding the non-linear dynamics
of transmission and for making forward predictions. While it is beyond the scope of this
work, the extent to which the signature of fine-scale, non-linear dynamics can be detected
in annualized surveillance remains and interesting question. The real practical benefit of
the state space model presented here is the explicit framework for combining a dynamic
model for incidence with surveillance data to obtain objective predictions of burden and
their associated uncertainty.

State space approaches to burden estimation present three important programmatic
benefits for policy applications; they are rooted in surveillance data, objective, and flexible.
The availability and quality of disease surveillance data is a significant challenge in public
health. Because the inference for state space models is grounded in the surveillance data,
rather than expert opinion alone, the data quality should be reflected in the prediction
bounds on the unobserved states. The nature of the state reconstruction, in the Kalman
filter and other methods, is such that addition of new data improves inference of the param-
eters and thus prediction at all time steps. Thus, state space models provide an incentive
to continue and improve surveillance.

In general, the data are collected at a local (provincial or national) scale, reported
from health facilities to subnational and national authorities, and are principally analyzed
at a regional (national or international) scale. The explicit use of the local scale data in
estimating burden and the resulting policy has the benefit of facilitating communication with
the local levels. Prior burden estimation methods have imposed subjective classifications
on high reporting and low reporting countries and conducted different analyses for each
(Stein et al. (2003), Wolfson et al. (2007)). While justifiable, these methods are subject to
criticism by the local (national) constituents as to the classifications used. The state space
model approach we have proposed here is objective and equitable in the sense that the same
algorithm is applied to all data, and the reconstruction of the unobserved states (and the
associated estimates of reporting) are based only on the input data.

As with any analysis, the inference is only as good as the underlying model and quantity
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of data will allow. We have presented fairly simple state and observation equations for the
sake of illustration. In particular, it seems unlikely that the reporting rate, θ3, would be
constant through time. Valid arguments could be made that the reporting rate should
be higher during outbreaks due to heightened awareness, or should scale with the vaccine
coverage rate (i.e. increased investment in public health), or transitions to new surveillance
protocols. While addressing this question is beyond the scope of this work, it is worth
noting that analysis of such candidate models for, say, the functional relationship between
reporting rate and vaccine coverage is a straightforward extension of these methods. Clearly
there are many candidate models for both the state and observation equations that could
be considered. Indeed, it may be that the appropriate model has not yet been developed. A
benefit of state space models is that they are based in the formal framework of likelihood,
which allows for an objective comparison of candidate models and a basis for the adoption
of new models as they are proposed.

The reconstruction of imperfectly observed time series using state space models presents
a useful tool for policy. These methods provide a solution to the problem of developing
an objective correction for under-reported surveillance data. Further, the explicit use of
surveillance data to derive both predictions with error bounds places a measurable value
on collecting high quality surveillance data and facilitates the communication of policy
decisions. Measles is peculiar in that the relatively simple epidemiology limits the number
of unobserved states to only susceptible and infected individuals. Developing state space
models for other pathogens that might have long latency periods or unobserved carriers (e.g.
pertussis and meningitis) would be more difficult, though is at least theoretically amenable
to these methods.

6. Conclusions

The authors would like to acknowledge support from World Health Organization and the
Inference for Mechanistic Models Working Group supported by the National Center for
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7. Appendix

In this appendix, we describe the particle filter framework that was used as a comparison.
The basic steps of prediction followed by update that are seen in the extended Kalman
filter are also used here. See Doucet et al. (2001) for a basic introduction to particle filters.
However, the starting point for the recursion of the filter, the conditional distribution of the
system at time t − 1 given the data from 1 to t − 1, is represented by a cloud of particles
instead of a mean and variance. In this way, the representation of the distribution is more
robust. We will use M particles to represent the filter at each time step. So, we again need
to describe the recursion to obtain a new cloud of particles representing the distribution
of St given C1, ..., Ct from the cloud of points representing the distribution of St−1 given
C1, ..., Ct−1.

So, we start with M particles, S1
t−1|t−1, ..., S

M
t−1|t−1, which represent the distribution,

St−1 given C1, ..., Ct−1. Then we perform the following steps.

(a) Perform one step ahead prediction by simulating from the transition probability den-
sity for the system for each of the particles, Sm

t−1|t−1. We then have a new set of

particles S1
t|t−1, ..., S

M
t|t−1.

(b) Create weights using the current observation, Ct, for each of these predictions using
the observation distribution of Ct given St, wm = p(Ct|Sm

t|t−1).

(c) Standardize the weights, wm/
∑M

i=1 wi, and use these probabilities to sample m ob-
servations with replacement from S1

t|t−1, ..., S
M
t|t−1. We denote the resulting particles

by S1
t|t, ..., S

M
t|t .

One important thing to note is that the second step allows us to approximate the
contribution to the likelihood function at the tth time point. Specifically,

L(Θ) =

T
∏

t=1

p(Ct|Ct−1, ..., C1) =

T
∏

t=1

∫

p(Ct|s)p(s|Ct−1, ..., C1)ds ≈
T
∏

t=1

M
∑

m=1

p(Ct|Sm
t|t−1)

Note that maximizing this likelihood, especially over several parameters, could be quite
challenging given that the evaluation of the likelihood contains sampling error from the
Monte Carlo integration. Therefore, we use a Bayesian framework and simulate from the
posterior distribution. To do this, we simulate a sample from the prior distribution, weight
this sample with the likelihood value corresponding to that draw, and resample using these
weights to arrive at a sampling from the posterior. For each simulated time series, we
evaluated the posterior using 5000 draws from the prior distribution and evaluated the
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Table 3. Comparison of the mean and quantiles (0.025th and 0.975th) of the prior and
posterior distributions for the observation rate for the large population example.

True Reporting Rate
0.05 0.10 0.15 0.20 0.25

Prior 0.1 0.1 0.1 0.1 0.1
(0.007-0.35) (0.007-0.35) (0.007-0.35) (0.007-0.35) (0.007-0.35)

Post. Gaussian PF 0.049 0.098 0.147 0.196 0.245
(0.04-0.06) (0.08-0.11) (0.13-0.17) (0.18-0.21) (0.23-0.26)

Post. Binomial PF 0.049 0.095 0.140 0.188 0.232
(0.04-0.06) (0.09-0.12) (0.13-0.15) (0.17-0.20) (0.22-0.25)

likelihood for each using 1000 particles. We present the mean of the posterior distribution
as the parameter estimate. We then evaluate the particle filter at the posterior means for
all parameters, using 1000 particles, to estimate the unobserved annual incidence.

For both the large and small population simulations we chose priors that were uniform
on the log transformed parameters for θ1, θ4, and θ5 and uniform on the logit transformed
parameters for θ2 and θ3. The prior bounds for the Gaussian particle filter were for θ1 to θ5
respectively were (0, 5), (-5, 3), (-5, -.5), (0, 20), (1, 20). The prior bounds for the Binomial
particle filter for θ1 to θ5 respectively were (0, 5), (-5, 3), (-5, -.5), (8, 20), (0, 4.5). For
both models and both population sizes, the posterior distribution was significantly different
from prior distribution for the reporting rate (see Table 3 for a comparison of the posterior
and prior for the large population simulations).


