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Summary. We introduce a nearly automatic procedure to locate and count the quantum dots in images of kinesin motor
assays. Our procedure employs an approximate likelihood estimator based on a two-component mixture model for the image
data; the first component has a normal distribution, and the other component is distributed as a normal random variable
plus an exponential random variable. The normal component has an unknown variance, which we model as a function of the
mean. We use B-splines to estimate the variance function during a training run on a suitable image, and the estimate is used
to process subsequent images. Parameter estimates are generated for each image along with estimates of standard errors, and
the number of dots in the image is determined using an information criterion and likelihood ratio tests. Realistic simulations
show that our procedure is robust and that it leads to accurate estimates, both of parameters and of standard errors.
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1. Introduction
Precise tracking of microscopic biological specimens can
provide insights into the function and dynamics of those spec-
imens (Yildiz and Selvin, 2005). This tracking can be accom-
plished by analyzing digital images (usually TIFF) produced
by a CCD (charge-coupled device) camera interfaced with a
fluorescence microscope. In fluorescence microscopy, a speci-
men of interest is marked with a fluorescent particle, or flu-
orophore, before being irradiated with light at the excitation
wavelength of the fluorophore. When the excited electrons
revert to their ground state, they emit photons at the fluo-
rophore’s emission wavelength. A filter separates the emitted
light from the excitation light so that only the light from the
fluorophore can pass through the microscope to the camera
system (Rost, 1992).

Traditional organic fluorophores, for example, green fluo-
rescent proteins (GFPs), present several limitations including
dimness, photo-instability, and narrow excitation bandwidths.
Consequently, quantum dots, which are composed of semicon-
ductor nanocrystals, have emerged as an attractive alterna-
tive for bio-imaging applications. Quantum dots are bright
and photostable, and have broad excitation spectra and nar-
row emission spectra, owing to the so-called quantum confine-
ment effect exhibited by semiconductor nanocrystals (Arya
et al., 2005).

In conjunction with the Hancock Lab at Penn State
University, we use fluorescence microscopy to study motor
proteins, in particular kinesin motor proteins, which are im-
portant agents of intracellular transport (Vale, 2007). Our
images are unique in some respects. Each fluorophore is at-
tached to a head (roughly 5 nm in diameter) or near the neck
linker of a kinesin motor. In order to infer the dynamics of
the kinesin head, it is important to determine the location

of the fluorophore to within a few nanometers, a task that
is complicated by a pixel width on the order of several tens
of nanometers. Luckily, the true location of the fluorophore
is at the center of a point spread function that contains a
great deal of information about the center. By extracting this
information, we can overcome the limited resolution of the
imaging apparatus. Additionally, the motor assays contain a
relatively small number of fluorophores, and so the methods
presented here may not be efficient enough computationally
to be used in a more general setting.

Until recently our kinesin assays employed only GFPs,
and so, in 2009, we presented a full likelihood-based method
for counting and locating the fluorophores in GFP images
(Hughes, Fricks, and Hancock, 2009). Our unified parametric
approach makes it possible to efficiently and automatically
locate and count the fluorophores in an image so that experi-
mentalists can process many images (hundreds or thousands)
in a short time and without human intervention. Moreover,
the statistical efficiency of maximum likelihood estimators al-
lows for precise localization of fluorophores.

When the Hancock Lab subsequently began using quantum
dots, we discovered that our sampling model for a GFP image,
which will be detailed in Section 2, does not fit a typical
quantum dot image. More specifically, we noticed that the
pixel intensities for the background of a quantum dot image do
not follow the (approximate) normal distribution assumed by
the GFP model; the intensities are strongly right skewed. And
a fit of our GFP model to a quantum dot image yields large
standardized residuals for pixels near dots, which indicates
that those pixels have larger variances than predicted by the
GFP model. Figure 1 shows a histogram for 1000 background
pixels from the quantum dot image that will be analyzed in
Section 5. The image is also shown in the figure, as is a relief
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Figure 1. A typical quantum dot image of a kinesin assay. The x and y coordinates of pixels are given in nanometers.
Z represents pixel intensity. Panel 3 shows a histogram for 1000 pixels from the image background. Notice the strong right
skewness of the background intensities, which contradicts the sampling model for a GFP image. Panel 4 shows the standardized
residuals from a fit of our GFP model, versus the pixels’ y coordinates. The large residuals (some of which are clearly visible
below −20 and at y locations of 1000 and 5000, approximately) around the dots indicate a larger variance there than predicted
by the GFP model.

plot of the image and a plot of the standardized residuals from
a fit of our GFP model.

Not surprisingly, applying the GFP model in the pres-
ence of the above-mentioned departures—strong skewness and
larger variance near fluorophores—leads to erroneous model
selection and erroneous inference for fluorophore location. In
2005, Lidke et al. used independent component analysis (ICA)
to localize the fluorophores in quantum dot images. Their pro-
cedure exploits the blinking of dots that remain stationary
from image to image. But the addition of a chemical called
β-mercaptoethanol (BME) prevents our quantum dots from
blinking (Hohng and Ha, 2004), and the dots in our images
do not remain stationary across frames because the dots are
bound to moving kinesin motors.

Thus, we elected to extend our previous GFP model in an
effort to localize quantum dots in a manner appropriate to
our experimental setup and goals. In this article, we present a
new sampling model that allows our unified likelihood-based
procedure to be applied to these quantum dot images of motor
assays as well as GFP images.

2. Sampling Model for a Quantum Dot Image
In a previous study, we presented the following sampling
model for a GFP image (Hughes et al., 2009). A microscope
slide was represented as a rectangular region T ⊂ R

2, with N,
a Poisson random field on T, representing the light emission
from the slide (Sarpeshkar, Delbruck, and Mead, 1993). The
intensity function for N consists of background fluorescence of
magnitude B and a sum of bivariate Gaussian functions, one
for each fluorophore. (A fluorophore’s emission pattern fol-
lows an Airy function, but the Airy function is approximated
well by a Gaussian function (Thompson, Larson, and Webb,
2002).) Hence, any Borel set R ⊂ T is a Poisson random vari-
able with expectation

EN (R) =
∫ ∫

R

B +
J∑

j=1

gj (x, y) dx dy,

where

gj (x, y) = Aj · exp

(
− (x − sj )2 + (y − tj )2

S2

)
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and J is the number of fluorophores. Note that gj , which rep-
resents the jth fluorophore, is the Gaussian function centered
at (sj , tj ) and with “height” Aj and “spread” S.

The light emitted from the slide is collected by the pixels
of a CCD camera. We represent the pixels by partitioning T
into a uniform grid with each cell d nanometers on a side, thus
arriving at, say, n pixels, R1, . . . , Rn , and their corresponding
random variables, N (R1), . . . , N (Rn ). To ease notation and
description, we will henceforth let Zi = N (Ri ) for i = 1, . . . , n
and use the term “pixel” to refer to the random variable Zi

rather than to the region Ri . Thus, for a given pixel Zi with
center (xi , yi ),

EZi =
∫ y i +d/2

y i −d/2

∫ xi +d/2

xi −d/2

B +
J∑

j=1

gj (x, y) dx dy,

which is approximately equal to(
B +

∑
j

Aj · exp

(
− (xi − sj )2 + (yi − tj )2

S2

))
d2.

We reparameterize so that B and the Aj absorb the constant
d2. This gives

EZi ≈ B +
∑

j

Aj · exp

(
− (xi − sj )2 + (yi − tj )2

S2

)
= μi .

(1)

The intensity of the background fluorescence is sufficiently
large to allow for a normal approximation to the Poisson,
which implies that

Zi
·∼ N (μi , μi ).

However, the stochasticity in an image may not be limited
to Poisson noise. Randomness may also arise from the camera
system due to signal quantization and dark current, for ex-
ample (Bobroff, 1986; Thompson et al., 2002). This source of
variation is modeled as Gaussian white noise. Thus we arrive
at the approximate sampling model for pixel i

Zi
·∼ N (μi , μi ) + N (0, σ2) d= N (μi , μi + σ2), (2)

and is independent of the other pixels because the underlying
process is Poisson and the instrumentation error is indepen-
dent.

Maximum likelihood estimation based on (2) works well
for certain GFP images, but our quantum dot images de-
part from (2) in two ways: (i) the variance may not be equal
to the shifted mean, and (ii) a quantum dot image may ex-
hibit salt-and-pepper noise, so called because it is present
or absent at random (González and Woods, 2008). More
specifically, the variance function for our quantum dot im-
ages is unknown but Poisson-like in that the variance changes
with the mean. And the salt-and-pepper noise is exponen-
tially distributed. These differences led us to formulate a two-
component mixture model for the pixels of these quantum dot
images (McLachlan and Peel, 2000). The mixture density for
Zi is given by

fi (zi ) = (1 − π)f i
N (zi ) + π

(
f i
N (zi ) ∗ fE(zi )

)
, (3)

where f i
N denotes the normal density corresponding to pixel

i, fE refers to an exponential density, ∗ is convolution, and

π ∈ (0, 1). The normal-exponential convolution density ac-
commodates the exponential error. This density is given by

fN∗E(z) = fN (z) ∗ fE(z)

=
1
λ

exp
(

v

2λ2 +
μ − z

λ

)(
1 − Φ

(
μ − z√

v
+

√
v

λ

))
for a normal with mean μ and variance v and an exponential
with mean λ, where Φ is the standard normal cdf.

Retaining (1) and combining it with the new error model
gives the new expectation for pixel i:

E(Zi |Wi ) = B +
J∑

j=1

gj (xi , yi ) + Wiλ = μi + Wiλ,

where the Wi are i.i.d. Bernoulli random variables that indi-
cate the presence or absence of the exponential error, which
has mean λ.

Since the variance function for the normal component is
unknown, we model it as a function of the mean, v(μ). This
implies that pixel i is approximately distributed as

Zi
·∼ N (μi , v(μi )) + WiE(λ), (4)

conditional on Wi and independent of the other pixels. Note
that this model can include the Gaussian white noise from (2)
through v(μ). Thus (4) can be viewed as an extension of the
previous model, (2).

3. Parameter Estimation, Model Selection, and
Standard Errors

We estimate the parameters from (3) using a maximum like-
lihood technique. An initial training run is used to estimate
the unknown variance function, and the estimated variance
function is used during estimation of the parameters for sub-
sequent images. (One could of course estimate the variance
function for each image, but this would be too computation-
ally expensive when processing hundreds or thousands of im-
ages.) For each image, we fit a collection of candidate models
corresponding to a sequence of dot counts. Since the candidate
models are nested, we use likelihood ratio tests to do model
selection. After the number of dots has been determined, we
use likelihood inference for the locations of the dots.

3.1 Parameter Estimation
The log-likelihood corresponding to (3) is given by

�n (θ |Z) =
n∑

i=1

log((1 − π)f i
N (Zi |ψ1) + πf i

N∗E(Zi |ψ2)),

where ψ1 = (B, S, A1, s1, t1, . . . , AJ , sJ , tJ )′ are the parame-
ters for the mean of the normal, ψ2 = (ψ ′

1, λ)′, and θ is the full
parameter vector, (ψ ′

2, π)′. We minimize −�n in θ to obtain
the maximum likelihood estimator, θ̂. Because the likelihood
is a rather complex function of the parameters, an analytical
approach to optimization seems infeasible, and so we optimize
the likelihood numerically. Since we may wish to process a
stack of images numbering in the hundreds or thousands, it is
important that the optimization be efficient, and so we sug-
gest a quasi-Newton algorithm. The quasi-Newton approach
is less expensive computationally than Newton’s method be-
cause the former does not require computation of the Hessian
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matrix of second derivatives of the objective function (Dennis
and More, 1977). We found the likelihood function to be lack-
ing in curvature with respect to A and found that rescaling the
quasi-Newton optimization prevents premature convergence.

3.2 Variance-Function Estimation
We estimate the variance function, v, using B-splines (De
Boor, 2001). That is, we express v as v(μ) =

∑N

j=1 bj Bj (μ) =
Φ(μ)b, where Φ = (B1, . . . , BN ) is a suitable spline basis and
b = (b1, . . . , bN )′ are the spline coefficients. Since a quantum
dot image may exhibit shades of gray in the range 0 to 65,535,
we place boundary knots at these end points. Interior knots
are equally spaced. Initially, the minimum four degrees of free-
dom are assumed and the quasi-Newton algorithm is run until
convergence, first estimating the mean surface with the vari-
ance surface assumed known, then estimating the variance
surface with the mean surface assumed known. After conver-
gence, the likelihood is computed and saved along with the
estimated spline coefficients. Then five degrees of freedom are
assumed, optimization is repeated, and a second likelihood
is computed. This process continues until the likelihood de-
creases from one iteration to the next, at which time the previ-
ous estimate of b is selected as b̂ so that v̂ = Φ(μ̂)b̂ will serve
as the variance function during the processing of subsequent
images, where μ̂ refers to the estimated normal mean surface
for the image in question. We note that, in principle, a posi-
tivity constraint should be imposed on the estimated variance
function, but we found this to be unnecessary in practice.

The selection of a suitable training image is paramount.
Ideally, the training image will have many dots, the num-
ber of which is known. At least several of the dots should
have pixel values approaching 65,535. The image should have

plenty of pixels that are at least as bright as any pixel con-
tained in the images to be processed subsequent to training.
A training image that does not satisfy these conditions may
contain too little information about the variance function, in
which case the estimated variance function will not be useful
for processing subsequent images. Although estimation of v
could employ more than one training image, our simulations
show that a single suitable image is sufficient. The images in
Figure 2 show the results of training on two simulated im-
ages, each of which had 10 dots. The first image had too few
observations in the upper part of the intensity range, and so
the estimate of v is quite poor in that region. The 10 dots
in the second image, however, were about equally bright and
had pixel values near 60,000.

If an unsuitable image was selected for training, the fit
diagnostics described in Section 5 should, when applied to a
few later images, indicate that variance-function estimation
failed with respect to some images in the stack.

3.3 Model Selection, i.e., Counting the Dots
Likelihood optimization tends to be sensitive to initial con-
ditions, and so a preliminary application of ordinary least
squares (OLS) provides reasonable starting values for the
likelihood-optimization algorithm. The OLS sub-algorithm
also uses a naive information criterion to count the quantum
dots. (See Konishi and Kitagawa (2008) for an introduction
to information criteria.) During the subsequent likelihood-
optimization phase, the count is finalized using likelihood ra-
tio tests.

The information criterion used to get an initial count is
given by

IC (J ) = n log(RSS/n) + 3J
√

n,

Figure 2. The estimated variance function and the true variance function for two simulated images (not shown). For each
plot, the true variance function, v(μ), is shown in gray while the estimated variance function, v̂(μ), is shown in black. The
image corresponding to Panel 1 permitted only poor estimation because it had too few pixel values near the maximum
intensity. The image corresponding to Panel 2 allowed for a very good approximation.
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where J is the (assumed) number of dots, n is the number
of pixels, RSS is the residual sum of squares, and 3J is the
number of free parameters devoted to dots (Aj , sj , and tj for
each dot). Note that IC is an increasing function of RSS and
J, which implies that IC rewards a better fit (smaller RSS)
and penalizes more free parameters. Initially, zero dots are
assumed, and iteration of OLS goes on until IC (J ) > IC (J −1),
which indicates that the image should contain J − 1 dots or
less.

The IC used here is a non-standard information criterion.
We found that the Bayesian Information Criteria (BIC) also
works but does not penalize additional parameters sufficiently.
This can allow the OLS stage of the algorithm to significantly
overestimate the correct number of dots. Since a typical image
contains tens of thousands of pixels, this overfitting causes
excess and costly computation during the MLE stage of the
algorithm. Our simulations showed that replacing BIC’s log n
with

√
n alleviates overfitting. It is important, though, to keep

in mind that no information criterion based on OLS is truly
appropriate here because OLS assumes the wrong sampling
model.

Because it is based on a misspecified sampling model, the
information criterion cannot provide a reliable final count of
the dots in an image. Thus the top-level algorithm starts at
the OLS-based count and works backward, computing at each
step the likelihood ratio statistic

G2
(J,J +1) = −2(�n (θ̂J |Z) − �n (θ̂J +1 |Z)).

Since we assume that v is known, the candidate models for
a given image are nested. This implies that G2

(J,J +1) should be
approximately χ2 distributed with three degrees of freedom
(Shao, 2003). When G2

(J,J +1) becomes significant we conclude
that the image contains J + 1 dots. If we find no significant G2

we conclude that the image contains no dots (e.g., when the
specimen has moved out of frame). In the simulation studies
presented here, the procedure always gave the correct count,
but a sufficiently small min{Aj } will of course cause the oc-
casional miscount.

3.4 Inference for Dot Locations
According to standard likelihood theory, a maximum like-
lihood estimator is asymptotically Gaussian distributed
provided that certain regularity conditions are satisfied
(Lehmann, 1999). The plots in Figure 3 show that our estima-
tor is indeed approximately normally distributed for a typical
image. The plots were produced from 1000 simulated 10,000-
pixel images. Each image had a single dot located at (s1, t1) =
(2347, 5143), and (B, A1, S, λ, π) = (800, 40000, 200, 500, 0.5).
The true variance function was v(μ) = μ3/2, and the study
used the estimated variance function from the second plot of
Figure 2.

Although the approximate covariance for θ̂, which we de-
note Σ̂, can be used to compute an approximate confidence
interval for any element of θ, we consider only the dot loca-
tions, which are of primary interest to experimentalists. For
the center of dot j, we have

ĉj = (ŝj , t̂j )′
·∼ N (cj = (sj , tj )′, Σ̂j ),

where Σ̂j contains the elements of Σ̂ corresponding to dot
j. This implies the following approximate (1 − α)100% confi-
dence ellipse for cj (Ravishanker and Dey, 2002):{

cj : (ĉj − cj )′Σ̂
−1
j (ĉj − cj ) � χ2

1−α ,2

}
.

If we wish to control the image-wide error rate, that is, if
we desire a collection of ellipses that enclose all J dots at
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Figure 3. The estimators are approximately normally distributed. Note that π̂ appears to be biased downward. Since π̂ is
negatively correlated with B̂ and λ̂, those estimators trend upward. But the biases are slight (2%, 0.5%, and 0.4%, respectively),
and π, B, and λ are nuisance parameters.
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confidence level (1 − α)100%, we can apply the well-known
Bonferroni correction (Shao, 2003):{

cj : (ĉj − cj )′Σ̂
−1
j (ĉj − cj ) � χ2

1−α/J,2

}
,

for j = 1, . . . , J .
We conducted a second 1000-image simulation study to de-

termine whether these approximate confidence ellipses have
the correct coverage probabilities, and also to compare the
performance of our mixture model with the GFP model and
with the homoscedastic normal model, that is, the model cor-
responding to ordinary least squares estimation, the standard
method for localization (Thompson et al., 2002). Each image
had 10,000 pixels and three dots. The coverage probabilities
for the dots were 94.4%, 95.3%, and 95.6% for the mixture
model; 10%, 8.9%, and 10.9% for the GFP model; and 21.6%,
19.8%, and 20.5% for OLS. The corresponding mean squared
errors (for ŝj , j = 1, 2, 3) were 2.97, 2.74, and 3.06 for the mix-
ture model; 5.27, 5.33, and 4.97 for the GFP model; and 5.81,
5.8, and 5.39 for OLS. Our mixture model permits reliable in-
ference for this type of data while the GFP and homoscedastic
models show poor coverage rates. And the mixture model also
exhibits mean squared errors that are approximately half as
large as for the other models. As we mentioned previously, lo-
calization to within a few nanometers is paramount for motor
assays.

4. Robustness Study
To show that our procedure is capable of fitting images with
many dots, we simulated and analyzed a 12-dot image. In the
interest of brevity, Table 1 shows the parameter values, point
estimates, and standard errors for just a few of the dots. Note
that every approximate 95% confidence interval covered the

Table 1
Selected parameter values, point estimates, and standard

errors for a simulated image with 12 quantum dots. The point
estimates are very close to the true values, especially for those
parameters of primary interest to experimentalists, that is, the
dot locations (s1, t1), (s4, t4), and (s7, t7). The standard errors
pertaining to dot locations are all smaller than 2 nm. We also
note that every approximate 95% confidence interval covered

the true parameter value, for all 12 dot locations and all
nuisance parameters.

Parameter True value Estimate ŜE

s1 644 644.009 1.645
t1 2053 2054.208 1.726
A1 40810 41799.294 838.827
s4 2691 2689.753 1.750
t4 553 553.685 1.768
A4 40716 42092.421 876.943
s7 3204 3203.680 1.900
t7 1416 1416.437 1.923
A7 35907 33564.893 732.839
S 130 130.355 0.411
B 800 801.162 3.707
λ 600 593.135 11.417
π 0.5 0.501 0.012

truth, for all 12 dot locations and all of the nuisance param-
eters.

Quantum dot images sometimes exhibit certain atypical
features that could cause inference to suffer. The most com-
mon of these features are (i) especially dim dots, (ii) dots that
are only partially contained in the image, and (iii) dots that
are close together. We conducted a simulation study to in-
vestigate the effects of these scenarios on the coverage prob-
abilities. As in the studies described above, we applied our
procedure to 1000 10,000-pixel images for each of the three
scenarios, and each image contained three quantum dots. For
the dim scenario, one of the three dots has A = 5000, which
represents an eightfold decrease relative to the other two dots.
For the partial scenario, one of the three dots is located only
75 nm from the image’s edge. And for the close scenario, two
of the dots are located just 400 nm apart. The coverage rates
for the study are shown in Table 2.

Although we have not seen images with extremely sparse
or extremely dense salt-and-pepper noise, images with these
characteristics are possible, and so we thought it prudent
to determine the effects of these scenarios on the coverage
rates. Each study used 1000 10,000-pixel images, and we set
π equal to 0.05 and 0.95. The coverage rates for these scenar-
ios (sparse and dense) are given at the bottom of Table 2.
A nearly empty component affects the coverage only slightly.

For our final robustness study, we investigated the sensitiv-
ity of our procedure to the Gaussian assumption by replacing
the normal component of the mixture with an appropriately

Table 2
Results from our robustness study. For each scenario—see

Section 4 for detailed descriptions—we simulated 1000 images,
with each image having three dots. The first column of the

table lists the various scenarios. The second column gives the
types of the dots, three for each scenario. And the final column

reports the coverage rates of approximate 95% confidence
ellipses for the locations of the three dots. Note that the rates

are generally close to 95%, even for images with atypical
features, which indicates that our procedure permits reliable

and robust inference for dot location.

Scenario Dot type Coverage rate

dim Typical 95.3%
Typical 94.9%

Dim 95.1%
close Typical 94.6%

Close 95.6%
Close 94.9%

partial Typical 94.8%
Typical 94.8%
Partial 95.2%

sparse Typical 94.5%
Typical 94.2%
Typical 95%

dense Typical 95%
Typical 93.5%
Typical 95.8%

heavy tails Typical 98.5%
Typical 98.7%
Typical 95.8%
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Table 3
Parameter estimates for an experimentally observed quantum

dot image. The second and third columns give the point
estimates and standard errors obtained by fitting our quantum

dot model. The final two columns give the corresponding
results obtained by fitting the GFP model.

Parameter Est. ŜE GFP Est. GFP ŜE

s1 4750.218 1.529 4784.93 0.225
t1 1213.598 1.194 1219.11 0.228
A1 23535 201.787 24313 48.5
s2 1043.188 1.164 1030.49 0.278
t2 4829.266 1.368 4845.82 0.271
A2 16,764.215 219.372 17949.6 39.7
S 138.564 0.787 173.661 0.151
B 831.924 0.662 1478.72 0.45
λ 809.083 10.357 NA NA
π 0.85 0.005 NA NA

scaled and relocated t3-distributed component. More specifi-
cally, we simulated 1000 10,000-pixel images according to

Zi ∼ μi +
√

v(μi )/3 t3 + WiE(λ).

In our study, this heavy-tailed component increased the cov-
erage rates (Table 2, scenario heavy tails).

5. Analysis of an Experimentally Collected Quantum
Dot Image

Now we apply our procedure to an experimentally collected
quantum dot image (Figure 1) and describe appropriate fit
diagnostics. We note that fitting this image took only 35.5
seconds on a 2.8 GHz Intel Xeon Harpertown processor. The
operating system was Snow Leopard (with 64-bit kernel), and
the programming language was R. The resulting estimates and
approximate standard errors are shown in Table 3. Since the
approximate 95% confidence regions for the dot locations,
(s1, t1) and (s2, t2), provided by the quantum dot model do
not overlap those provided by the GFP model, at least one of

these fits has produced invalid inference for the dot locations.
Moreover, the margin of error (roughly two standard devia-
tions) for the arguably more reliable quantum dot model is
more than 2 nm while the margin of error for the GFP model
is less than one. This is an important distinction when judg-
ing the steps of a kinesin motor, which are roughly 8 nm in
length. The GFP method gives a false sense of precision that
cannot be relied on in this setting.

We diagnose the fit as follows. (4) implies that we can
view this problem as an incomplete-data problem, where Z is
observed but W = (W1, . . . , Wn )′ is hidden (McLachlan and
Peel, 2000). To construct fitted values, and thus residuals, we
need to estimate W . A natural estimator of γi = E(Wi |Z , θ̂)
is the likelihood that Zi came from f i

N∗E (McLachlan and
Krishnan, 1997):

γ̂i =
π̂f i

N∗E(Zi | ψ̂2)

(1 − π̂)f i
N (Zi | ψ̂1) + π̂f i

N∗E(Zi | ψ̂2)
.

We compute the γ̂i and threshold them to arrive at Ŵi =
1[0.5,1](γ̂i ), where 1 denotes the indicator function. Then the
fitted value for pixel i is Ẑi = μ̂i + Ŵi λ̂, and the estimated
variance is σ̂2

i = v̂(μ̂i ) + Ŵi λ̂
2. Recall that v̂(μ̂i ) = Φi b̂, where

Φi is the ith row of Φ(μ̂).
Now, the ith standardized residual is given by

ri =
Zi − Ẑi

σ̂i

=
Zi − μ̂i − Ŵi λ̂√

v̂(μ̂i ) + Ŵi λ̂2
.

If Ŵi = 0, ri should be approximately standard normally dis-
tributed. If Ŵi = 1, the (approximate) distribution of ri

should be

ri
·∼ N

(
0,

v(μi )
v(μi ) + λ2

)
+ E

(
−1,

√
λ2

v(μi ) + λ2

)
.

E(α, β) denotes an exponential random variable with loca-
tion parameter α and scale parameter β; the density function
is fE(r |α, β) = β−1 exp(−(r − α)/β)1[α ,∞)(r), β > 0. If the ith
pixel is part of the image background, v(μi ) � λ2, in which

Figure 4. Panel 1: A histogram of the standardized residuals for the image in Figure 1. The theoretical density, with π = π̂,
is shown in gray. The residuals are approximately distributed according to (5), which indicates a good fit. Panel 2: An
empirical-variogram plot for the standardized residuals. The near constancy indicates the spatial independence specified by
the sampling model. Distance is given in nanometers.
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case ri
·∼ E(−1, 1). Since nearly all pixels are background pix-

els, the following mixture density gives the approximate dis-
tribution of the standardized residuals:

f (r) = (1 − π)φ(r) + πfE(r | − 1, 1), (5)

where φ is the standard normal density function. Hence, we
have the following approximate distribution for ri , conditional
on Wi and independent of the other residuals:

ri
·∼ (1 − Wi )N (0, 1) + WiE(−1, 1).

We examine the distribution of the standardized residuals
by comparing a histogram to the theoretical density given
in (5). And we check for spatial correlation among the stan-
dardized residuals by plotting empirical variograms (Cressie
and Hawkins, 1980). The diagnostics for the real quantum dot
image, which are shown in Figure 4, indicate a good fit.

6. Discussion
The method described in this article allows for fast, nearly
automatic analysis of quantum dot images of kinesin motor
assays. The use of a likelihood framework allows for efficient
estimation of parameters and standard errors, and our model
selection technique automatically determines the number of
dots in an image. This efficiency and automation (after an ini-
tial set up) make our approach attractive for processing large
stacks of images, which opens the possibility of developing
methods for accurately and precisely tracking active motors
across the frames of a “movie.”

Our simulation studies show that inference for dot location
is robust to dim, partial, or close dots, and also to sparse or
dense salt-and-pepper noise and heavy tails. The proposed
fit diagnostics are straightforward to prepare and to inter-
pret, which will allow experimentalists to easily verify that
the model assumptions are valid for a given experimental
setup.

References

Arya, H., Kaul, Z., Wadhwa, R., Taira, K., Hirano, T., and Kaul,
S. (2005). Quantum dots in bio-imaging: Revolution by the
small. Biochemical and Biophysical Research Communications
329, 1173–1177.

Bobroff, N. (1986). Position measurement with a resolution and noise-
limited instrument. Review of Scientific Instruments 57, 1152–
1157.

Cressie, N. and Hawkins, D. M. (1980). Robust estimation of the vari-
ogram: I. Mathematical Geology 12, 115–125.

De Boor, C. (2001). A Practical Guide to Splines. New York: Springer.
Dennis, J. and More, J. (1977). Quasi-newton methods, motivation and

theory. SIAM Review 19, 46–89.
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