Bulletin of Mathematical Biology manuscript No.
(will be inserted by the editor)

Kinesins with Extended Neck Linkers: A Chemomechanical
Model for Variable-Length Stepping

John Hughes, William O. Hancock, and John
Fricks

Received: December 28, 2010 / Accepted: date

Abstract We develop a stochastic model for variable-length stepping of kinesins
engineered with extended neck linkers. This requires that we consider the separa-
tion in microtubule binding sites between the heads of the motor at the beginning
of a step. We show that this separation is stationary and can be included in the
calculation of standard experimental quantities. We also develop a correspond-
ing matrix computational framework for conducting computer experiments. Our
matrix approach is more efficient computationally than large-scale Monte Carlo
simulation. This efficiency greatly eases sensitivity analysis, an important feature
when there is considerable uncertainty in the physical parameters of the system.
We demonstrate the application and effectiveness of our approach by showing that
the worm like chain model for the neck linker can explain recently published ex-
perimental data. While we have focused on a particular scenario for kinesins, these
methods could also be applied to myosin and other processive motors.
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1 Introduction

Kinesin motor proteins use the energy of ATP hydrolysis to transport intracellu-
lar cargo along microtubules. Plus-ended kinesins are typically dimeric, containing
two “heads” or motor domains each of which binds ATP and microtubules. The
heads are connected by their flexible neck linker domains to a coiled-coil stalk that
terminates in a cargo-binding tail domain (Figure 1). A wild-type dimeric kinesin
uses its two heads to step along a microtubule, transporting vesicles, protein com-
plexes, and other cargo to the periphery of the cell. Since the repeat distance of a
tubulin dimer is 8 nm, each step results in an 8 nm displacement of the motor.
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Fig. 1 The gross anatomy of a kinesin motor protein.

The molecular mechanism by which kinesins step along microtubules has been
the subject of intense investigation using biophysical and biochemical assays as
well as analytical and computational modeling. The mechanism is described as
a “hand over hand” cycle (1; 2; 3) during which each head alternately binds,
undergoes a conformational change, and detaches from the microtubule. Kinesin
is a processive motor, which is to say that a kinesin takes multiple (~ 100) 8
nm steps per interaction with a microtubule. Processivity requires coordination
in the chemomechanical cycle of the the two motor domains such that at least
one head is attached to the microtubule at all times. The ability to move proces-
sively involves both precise coordination between the chemomechanical cycles in
each motor domain and mechanical communication between the motor domains
to properly synchronize their ATP hydrolysis cycles.

The neck linker domain, a 14 amino acid sequence that has a contour length
of ~ 5 nm, is a key structural element of kinesin. The neck linker domain has at
least three distinct roles: (1) as the motor steps along the microtubule, the neck
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linker docks to the core motor domain, producing a plus-end displacement of a
few nanometers toward the next binding site on the microtubule; (2) following
neck linker docking, the free head diffuses to its next binding site, tethered by its
neck linker domain; and (3) when the tethered head binds, generating a strained
two-head bound state, mechanical forces between the two heads that underlie
head-head coordination are transmitted through the neck linker domain. Hence,
the neck linker must properly dock to the head; it must be sufficiently compliant
to allow tethered diffusion of the free head, yet sufficiently stiff to relay the forces
between the heads.

To experimentally test neck linker function, a number of groups have gener-
ated kinesins with extended neck linkers and measured the resulting change in the
biochemical or transport characteristics of the motors. Hackney found that ex-
tending the neck linker up to 12 residues had little effect on the maximal ATPase
of the motor but decreased the biochemical processivity approximately twofold.
Muthukrishnan et al. (4) and Shastry and Hancock (5) found that extending the
Kinesin-1 neck linker by only a few amino acids significantly reduced motor run
lengths (mechanical processivity). Yildiz et al. (6) engineered up to 26 proline
residues into the neck linker of human Kinesin-1 and measured the speed, run
length, and various other characteristics of the mutant motors. They found that
speed decreased markedly with increasing neck linker length while run length ex-
hibited little or no decrease, and with increasing neck linker length the motors
took larger forward steps as well as backward steps. From these studies, it is clear
that the mechanical properties of the neck linker domain play a key role in the
efficient stepping of kinesin, but quantifying how extending the neck linker alters
docking, diffusive tethering, and inter-head force transmission is difficult without
an integrated analytical or computational model of kinesin stepping.

Mathematical models for kinesin and other linear processive molecular motors
generally fall into a few categories. (See 7; 8; 9, for reviews.) First, there are purely
kinetic models that represent the chemical states necessary for the motor to step.
These models typically consist of a periodic discrete space Markov chain where
a return to a particular state corresponds to a single physical step of the motor
(15 10; 4; 5). However, during a mechanical step the motor must move continuously
through space, a fact that leads to an alternative description of the motor as a
Brownian particle in a periodic potential. The chemical state of the motor can be
incorporated using a flashing ratchet model that employs a stochastic differential
equation for the position of the motor, where the drift is modulated by the current
chemical state.

The difficulty with these standard formulations is that they provide a general
description of the “position” of the motor instead of explicitly describing the dy-
namics of each motor head. To understand the neck linker extension experiments
described in the biophysical literature, it is important to consider the diffusional
dynamics of the tethered free head of the motor. There are a few examples of previ-
ous modeling efforts that do consider the movements of the free head. For example,
Mather and Fox (11) included tethered diffusion in an analytical model of kinesin
stepping that posited irreversible binding exclusively to the forward binding site,
and Atzberger and Peskin (12) created a three dimensional model of the tethered
diffusion of the free head. In previous work by two of the current authors and Ku-
tys (13) we integrated a Brownian dynamics model of tethered head diffusion into
a stochastic model of the kinesin hydrolysis cycle. While this model was useful for
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analyzing the importance of neck linker mechanics on the diffusional search of the
tethered head for the next binding site, it was rather computationally expensive
and did not lend itself to detailed sensitivity analysis.

We recently formulated a model for the uniform-length stepping of kinesins—a
model that accounts explicitly for the constrained diffusion of the free head—and
developed a corresponding matrix computational framework for conducting sen-
sitivity analyses (14). Modeling the individual heads of a kinesin allows for the
analysis of motors with extended neck linker domains and permits the comparison
of competing models for neck linker dynamics. However, this model had a limi-
tation in that it could handle only kinesins that exhibit uniform-length stepping.
Furthermore, the model incorporated inter-head tension only implicitly through
static rate constants.

It has been shown experimentally that a kinesin with a sufficiently long neck
linker is capable of taking steps of varying lengths (variable-length stepping) in-
cluding backward steps(6). After the motor takes a large step, the tension be-
tween the heads, which is dictated by the properties of the neck linker domain,
will be larger, resulting in different kinetic rate constants than for uniform-length
stepping. While the previous model for neck linker extension (14) was insuffi-
cient for describing variable-length stepping, there have been previous examples of
variable-length stepping especially when considering myosin motors. Specifically,
Kolomeisky and co-authors have explored variable-length stepping by a modifica-
tion of a finite-state periodic model that allows for closed form solutions (15; 16).
In addition, these previous works have incorporated explicit spatial forces that
could include the effect of a freely diffusing head. Other models that incorporated
variable-lenght stepping includes Shaevitz et al (17) who explored variable-length
stepping by analyzing the step-time distribution. The present method differs by
handling a relatively more complex model of the constrained diffusion of the free
head at the expense of the explicit formulas found in this previous work. As both
myosin and dynein naturally take variable-length steps, there is a broad need for
this type of model to properly interpret single-molecule experimental data (18; 19).

In this paper, we extend our previous model for uniform-length stepping to
handle variable-step kinesins, and we describe a simple yet powerful framework
for quickly conducting n silico experiments similar to the laboratory experiment
of (6). Our computational scheme is applied to kinesins with neck linker inserts
ranging from six to 26 prolines, using two competing physical models for mechan-
ical properties of the neck linker. To compare with experimental results, motor
velocity, run length, and effective diffusion are computed, along with an analy-
sis of the distribution of step sizes for different neck-linker-extended motors. The
models are first run without considering the change in inter-head tension that re-
sults from variable-length steps. Then, the change in tension is modeled explicitly
using a Boltzmann factor, similar to the method for incorporating the effect of the
cargo on a stepping motor in Chen et al (20).

We will present a detailed model of a variable-length step cycle, link this model
to the stepping, and show the effects of different neck linker models on standard
experimental quantities. Section 2 will present a model for the constrained diffusion
of the freely diffusing head coupled to the kinetic state which occurs within one
cycle. This within-step model will depend on the separation between the heads
of the motor at the end of the previous cycle and will terminate after the head
which has become free then reattaches. In Section 3, we will review a framework
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for stepping models previously introduced in (14) that will allow us to connect the
within-step model to the overall dynamics of the motor along the microtubule. In
Section 4, we discuss a concrete computational strategy to evaluate experimental
quantities by linking our local diffusive model to the variable-length stepping of
kinesins. In Section 5, we demonstrate our method for explaining the data from
(6).

The results of the paper can be summarized as follows.

— We construct a local within-step model for kinesin which takes into account
the dynamics of the individual heads and allows for variable-length stepping.

— We formulate a semi-Markov model for stepping to calculate important exper-
imental quantities and link this scale to the local within-step model.

— We compare competing models for the kinesin neck linker.

— We conclude that a worm like chain model for the neck linker combined with
detachment rates that consider tension between the heads best matches the
relevant experiments in the literature.

2 Within-Step Dynamic Model

In general, a motor model should include not only chemical transitions but also
diffusion of the free head during a step of the motor. We now present a within-step
model for which a cycle comprises detachment of one head, the tethered diffusion
of that free head, and eventual rebinding of the head while also tracking the
chemical states of the motor. This model was previously explored using stochastic
simulation methods (13) and further developed in (14); however, in these previous
presentations the motor was only permitted to step to neighboring binding sites.

Assume first that the front head is bound at location 0. If the initial number of
binding sites separating the heads is S* and the rear head detaches, the free head
will have an initial position of y = —L - S* (where L is the distance in nanometers
(nm) between binding sites), but the position of the head will immediately begin
to fluctuate due to Brownian forces. We model the fluctuating position of the free
head using a stochastic differential equation with a drift that is determined by the
nature of the neck linker tether connecting the diffusing head to the bound head.
The position of the free head is thus governed by the following equation.

Y(t)=y+ / Ak (o) (Y (5))ds + o B(1), (1)

where K(t) is the discrete state Markov chain corresponding to chemical state
of the motor described in more detail below, and B(¢) is a standard Brownian
motion. The drift, ax(-), is determined by the nature of the neck linker and the
location of the bound head. The drift can be thought of as the instantaneous mean
velocity of the free head. A relatively straightforward example for the drift can be
derived from the potential energy corresponding to a Hookean spring connecting
the free head to the bound head. In this case, ax(y) = —k(y — yo)/¢, where K
is the chemical state, yo is an offset, x is the spring constant, and ( is the drag
coeflicient.

The process K (t) represents the chemical state of the motor at time ¢. For the
purposes of the current discussion, we will be considering four chemical states.
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The first state is when both heads of the kinesin are bound to the microtubule.
The second state describes rear head detachment from the microtubule. The third
state corresponds to ATP binding, and the fourth state describes ATP hydrolysis.
An appropriate way to think of the process K (t) then is as a discrete space Markov
chain including transitions between these four states. We will need to augment this
number of states in subsequent sections to describe other aspects of the models,
such as the varying distance between the heads at the initial time and whether
the front head or rear head detached from the microtubule.

When a motor head is near a binding site, an exponential clock will be started
where the rate may depend on the proximity of the head to the binding site. Each
binding site has an independent clock. If the clock is triggered the motor binds to
that site. This model, then, describes the movements of the free head of the kinesin
motor in one cycle given the distance between the bound heads at the beginning
of a cycle. We consider one cycle to start when both heads are bound. We define
the length of a step to be the change in position of the front head from the end of
one cycle to the end of the next. We will only refer to the heads as the front and
rear heads when the motor has both of the heads bound to the microtubule.

The transition rates between relevant chemical states may not always be ho-
mogeneous with respect to the location of the free head. The binding processes
could be written as

w50 = ([ v ). (2

where the N; are independent standard Poisson processes (also independent of
B). The index j corresponds to a possible binding site, and the function g;(-) is a
local binding rate for site j that depends on the position of the free head, Y (¢). In
general, for a particular position, Y'(¢), only one of the functions, g;(Y (¢)), will be
non-zero. One possible selection of the g;(-) would be a scaled indicator function
on some neighborhood of the binding site. Another possibility would be a function
that increased to a maximum at the binding site. Note that this is equivalent to
modeling the time to absorption in state j as an independent random variable, 7;,
when conditioned on the process Y as

t
P(rj > t) = exp <—/ gj(Y(s))ds) . (3)
0
The time to binding is then defined as
7 =inf{t : A;(t) > 0 for some j}. (4)

We also define Y (7) to be the location of the free head at the end of a cycle. In
Section 4 we will incorporate the chemical model and the diffusion model in an
illustrative example for variable-step motors. A simpler SDE model would assume
that this binding time is a hitting time, so that the probability of a step with
a given length is merely the probability of arriving at the appropriate binding
site. However, considering the true three-dimensional geometry, this may not be
reasonable, and so we establish this probability of binding when the motor is within
a certain radius of the binding site. Moreover, a hitting time formulation would
not allow for variable-length stepping.
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In the next section, we will present a stepping model. If we can calculate
the first and second moments for the duration of a cycle, the first and second
moments for the length of a step, and the covariance between the two, we will be
able to link this within-step model to a stepping model and calculate important
experimental quantities such as asymptotic velocity and effective diffusion. We
will need to consider the distance between the heads at the end of each cycle in
order to determine the initial conditions for the next cycle in this variable-length
stepping scenario.

3 Stepping Models for Kinesin

In this section, we review the framework from our previous work (14) for a uniform-
step motor, a motor capable of stepping forward or backward by only one binding
site, and we define important quantities of interest in the study of molecular mo-
tors. In particular, we see that the asymptotic velocity and effective diffusion are
natural descriptions of a coarsened version of kinesin stepping. We will present
run length as a measure of processivity of a motor and will then expand on this
model to incorporate a variable-length step.

3.1 Review of Uniform-length Stepping

We begin by introducing some notation and then recall some facts from our
uniform-step framework (14). We let N(t) denote the number of steps taken up to
time ¢, 7; denote the time required to take the ith step, and Z; denote the size in
microtubule binding sites of the ith step as an integer number of tubulin subunits
(each spaced 8 nm apart). In the case of uniform-length stepping, each step has the
same initial condition: both heads are bound, and one binding site separates them.
Consequently, the time and size of the current step do not depend on those of the
preceding step or any previous step. In other words, the sequence {(7;, Z;)};>1 is
independent and identically distributed. Given this assumption, N(t) is an example
of a renewal process with the 7; called renewals. Since {(74, Z;)};>1 are identically
distributed, we assume the 7; have finite mean p, and finite variance o2, the Z;
have finite mean pz and finite variance a%, and that their covariance is oz .

Two important quantities in the study of molecular motors depend on the
position of the motor at time ¢, which can be expressed as

N(t)

Xt =LY 7z, (5)

where L is the distance between binding sites. The first of these quantities is
asymptotic velocity, which can be defined as
. EX(t
Voo = lim J (6)
t—o0 t
Given the above definition of X(t), we apply some standard features of renewal
processes to obtain

EL N(t) Z.
Rt 7)

Voo = lim —=—=——
t—o00 Mt
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In addition to these properties of the expectation of the process, one may verify a
strong law of large numbers,

N(t)
L Z;
Voo = lim X _ lim Z =1tz (8)

t—o00 t—o00 Hr

a useful fact for data analysis. This implies that the empirical velocity for the path
of one motor will converge to the asymptotic velocity.
A second quantity of interest is effective diffusion (9), which can be defined as

VX(¢)

D = lim TR 9)

In (14), we were able to apply a functional central limit theorem from Whitt (21),
which relies on a central limit theorem for the partial sums Y Z; and }_ 7;. Using
a scaling parameter n,

n~Y? (X (nt) — Veont) = V2DB(t)

as n — oo where B(t) is a standard Brownian motion and

L2 2 72_ 2
D=3 (“Z;’ + o2~ 2@) (V202 + 120% — 2LVoco7,)/(217). (10)
Hr Hr N‘r

Note that this also implies a more traditional central limit theorem for the quantity
DY (X(t) = Vaol)

which converges to a standard normal random variable as time increases.

We also consider processivity through the expected run length of a motor—how
far a motor travels on average before dissociation. This quantity is commonly used
in experimental settings (22; 23). It is natural to model the number of steps prior
to dissociation as a random variable, N. The distance travelled before detachment
is then given by

N
R=1L> 7. (11)
=1

Using this definition, the mean run length is
ER = LENEZ; = LEZ (12)
T

where r is the probability of becoming detached at any time step . Note that the
processivity is defined in a slightly different framework as the asymptotic quanti-
ties. However, both of these quantities, asymptotic and detachment-based, appear
in the experimental literature and can be though of as reasonable approximations
if the motors take many steps before detachment.



Modeling Variable-Step Kinesins 9

3.2 Variable-length Stepping

Our within-step model is a local model in the sense that we focus on the dynamics
within a single step, the events that occur between two successive bindings to the
microtubule. In the uniform-length stepping scenario, the neck linkers are long
enough to permit the free head to rebind at only two locations, the binding sites
on either side of the bound head. Thus, the separation between the heads at the
end of a step—and consequently the initial separation for the next cycle—is always
one binding site. Since the initial condition is the same for each step, the within-
step dynamics are identical and require no information from the previous step. So,
the steps are independent. An illustration of uniform-length stepping is shown in
Figure 2, where Z is the step size. We define Z to be the binding site location
occupied by the front head at the end of a step minus the binding site location
occupied by the front head at the beginning of the step, where ‘front’ means closest
to the plus end of the microtubule.

‘ Sé z=0

A
ey

}_5 "

Dé- / 2

."l"'hh. ; Z=0

i, =
™~ 5E i e

Fig. 2 An illustration of uniform-length stepping.

The initial condition for a motor with extended neck linkers, on the other hand,
may vary depending on the previous step. For example, a motor with neck linkers
twice as long as those of a wild-type motor can reach four binding sites, two on
either side of the bound head, which implies that the ending separation between
heads, call it S, is either one or two binding sites. Hence, the initial separation,
S*, for the next step will also be one or two sites. The stepping of such a motor is
illustrated in Figure 3. The first panel of the figure shows the possible outcomes,
(Z,8), for S* = 1, and the second panel shows possibilities given S* = 2. In the
sequel, we will discuss in some detail the transition from the ¢ — 1th step of the
chain to the ith step. To simplify notation we will use a superscript * to indicate
the ¢ — 1th cycle and no superscript to indicate the ith cycle.

Since variable-length steps are not identical, the ending separation for a given
step becomes the initial separation for the next step, which implies that adjacent
steps are not independent. In the previous uniform-step framework, we needed to
consider only the moments of step duration and step direction. Now we must also
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Fig. 3 An illustration of variable-length stepping for a motor with neck linkers long enough
to permit a separation of two binding sites. S* is the initial separation of the heads, S is the
final separation, and Z is the step size.

consider the separation between heads when both heads are bound. Fortunately,
this sequence, {S;};>1, of separations forms a Markov chain. Moreover, the distri-
bution of the duration of the ith cycle, 7, and the length of the ith step, Z, will
depend on the previous cycle only through the separation between the heads at
the end of the previous cycle, S*, greatly aiding computation. To generalize the
formulas from the previous section for velocity and diffusion, we need to verify that
the sum of the Markov chain {(S;, 7, Z;) }s~1 will converge under the appropriate
scaling to a normal random vector. If this can be verified, and if the mean vector
and covariance matrix can be calculated, we will be able to use Equations 7 and
10 to calculate the effective diffusion and asymptotic velocity.
We will continue to be primarily interested in the position process

N(t)

Xt =>_ 7, (13)

and this is one element of a semi-Markov process. In general, a semi-Markov process
is defined as a stochastic process on the non-negative reals that jumps at discrete
times and the time between jumps and the value of the process during that epoch
form a Markov chain. Thus, the framework presented here is a multivariate semi-
Markov process with time between events equal to 7; and the value of the process
on the ith interval equal to (S;, Z;, 22:1 Z;). We are only interested in the final
component of the process. Semi-Markov chains were previously explored as a model
for related biophysical phenomena in (24).

In the next section, we will describe two specific variable-length stepping mod-
els and corresponding computations. To set the stage for those discussions, we
will complete this section by stating assumptions and defining notations that are



Modeling Variable-Step Kinesins 11

relevant for applying our framework in the context of any specific stepping model.
We assume that {(S;,7;, Z;)}i>1 has a stationary distribution, which must satisfy

(oo}
(s, t,2) = / ZZp(s,t,z|s*,t*,z*)ﬂ(s*,t*,z*)dt*, (14)
0o 55
where p(-|-) denotes the one-step transition density. Assume further that the tran-
sition density depends only on the separation of the heads at the beginning of the
cycle, S*. Then

(s, t,2) = Zp(s,t,z|s*)7rg(s*), (15)

where g is the stationary density of {S;};~1. If we can calculate this stationary
distribution, we can use (15) to find the stationary distribution of the full three-
dimensional process.

Now we introduce some notation to simplify the sequel. First, let the first mo-
ment, second moment, and variance of 7 with respect to the stationary distribution
be denoted by pr = Ex7, nr = Ex72, and 62 = 5, — p2. And let the conditional
moments of 7 given the value of the initial separation, S*, be denoted by p,|g-
and 7. |g-. To organize the calculations, we will form vectors p,|g- and 1, g- over
all possible values of the initial separation. We use similar notation for the mo-
ments of Z: uy, nz, UQZ, Kz|5%5 Nz|5% Kz|s* and Nz|s=- We will also require the
conditional probabilities for Z and S given S*; the simplest way to organize these
calculations is in matrices which we denote by P 75 and P g5, respectively. More
specifically,

P(Z=0]S*=1) ... P(Z=s"|8*=1)

PZ|S* = 5 (16)

P(Z = 0| S* = sM9%) .. P(Z = s | §* = gmax)

where s™#* is the maximum possible separation of the two heads when both are

bound, i.e., S* € {1,2,...,s™*}, which implies that Z € {0,+1,...,+s™*}. Note
that Pg|g- is the standard probability transition matrix for {S;}i>1-

For computation of the unconditional moments we assume that {S;};>1 has a
stationary distribution, the pmf of which we represent as the vector wg = (P(S =
1),...,P(S = s™**))". Note that mg is the principal right eigenvector of PIS|S*’ the
eigenvector associated with eigenvalue 1. Now, if we let z be the vector of possible
step lengths, we have

o0
pr =Er7 = Z/ tp(t|s")ms(s") = urgemrs (17)
- J0
nz = ZZZzp(s,z |s")ms(s™) = ZZzp(z|s*)7rS(s*) = z/PIZ|S*ﬂ'S = [L/Z‘S*ﬂ's.
z s s* s*  z
(18)

Similarly, o2 = ”7;—|S*7"5 —u? and 0% = Z/QP/Z|S*7TS = TIIZ‘S*ﬂ‘S — u%, where
zo = z e z, with e denoting row wise multiplication (vector-vector or matrix-
vector). And for the covariance, oz, = p'y_ g 75 — pizfir.

The above notation and formulas will aliow us to decompose relevant calcula-
tions into those involving only the process {S;};>1 and those involving (7, Z) given
the separation in the previous cycle. To summarize, we will need to calculate
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— the stationary distribution for {S;};>1;
— the first and second moments of the conditional distribution p(z, t|s*).

In the next section, we illustrate these calculations for two relevant models.

4 Connecting the Within-Step Model to the Stepping Model

We now illustrate how to make the necessary calculations to obtain the asymptotic
velocity and effective diffusion for two examples of variable-length stepping models.
The first, a purely kinetic model, is primarily for illustrative purposes. The second
corresponds to the model described in Section 2, which includes both diffusive and
kinetic components.

4.1 Purely Chemical Model

A common motor model assumes that a motor must pass through a sequence of
chemical states in order to take a step (25; 3; 2; 26; 27). A simple example of such
a model is shown in Figure 4. We use this chemical model to create a continuous-

' ohe

\\ kdetach de(ach

b

I ke

[ khydrolys:s

11 !! : ? --~:§?nbind

llach \\\

anach
| .@

Fig. 4 A chemical model for variable-length stepping. For this model the maximum separation
of the heads is two binding sites, and so this chemical model corresponds to the stepping
diagrammed in Figure 3. Note that ko, corresponds to the binding of one molecule of ATP.

time discrete-state Markov chain, Y (¢), that corresponds to a within-step model
for the motor. The chain starts in chemical state 1 and evolves until absorbed
in one of nine absorbing states corresponding to one of the outcomes shown in
Figure 3. We use the transition rate matrix for the chain to compute the moments
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of 7 and Z, which are in turn used to compute the quantities of interest introduced
in Section 3.

One way to describe the transition rate matrix, Q, for Y (¢) is to use the block
form

asn = (A5 E0). (19

where A represents the evolution within the step, B includes the transitions to
the absorbing states, and S* € {1,2}. The 0 matrices are included to ensure that
Q is square. Specifically, for the chemical cycle shown in Figure 4, A and B will
be defined as

ki1 k12, O 0 k14 O

0 FEop2q k2q,3: O 0 0

0 k3n,2n k3a,3n k3R,4R 0 0

AS )= 0 0 Fkaps, kaga, O 0

OO OO

(20)

0 0 0 0 kipapkaps, O
0 0 0 0 k3p4r k35,3 k35,25
0 0 0 0 0  kop3p kop2;
and
0 0 0 0 0 0 0 0 0
Ky 1o kapgg O o 0 0 0 0 0
0 0 0 0 0 0 0 0 0
B(s)=| 0 0 0 0 kyyp 000 Ry f,(21)
Fapt bagng kypyr 0 0 kyqy 0 0 0
0 0 0 0 0 0 0 0 0
0 0 k2F711—1 k2F712—1 0 0 k2F71f2 k2F71;2 0

where R and F represent rear head detachment and front head detachment, respec-
tively. Note that k; ; will be the negated sum of the non-diagonal entries of the ith
row of A and the entries of the ith row of B. Note that the values of these rates
can be filled in from Table 1

The nine columns of B correspond to steps of length 0, 0, -1,-1, 1, 1, -2, -2, and
2, respectively. Except for a step of size 2, there are two columns for a given step
size, z. The first column corresponds to a final separation of 1 binding site, and
the second column to a final separation of 2 binding sites. And so a given ending
state, 1%, corresponds to returning to chemical state 1 such that Z = z and S = s.
Note that there is only one column for Z = 2 because the event (Z = 2,5 = 1)
is impossible. And some of the rates shown in B will be 0 for a given S*. For
example, k4F71;1 =0 when S* =1 because Z = —1 is not possible then.

While the matrix B shown above was constructed based on the various pos-
sibilities for (Z,S) enumerated in Figure 3, we could instead formulate B using
a spatial grid of microtubule binding sites like that shown in Figure 5, where we
assume that the front head is located at binding site 0 at the beginning of a cycle.
In this scheme the binding site for the detached head determines Z and S. The
resulting matrix is given by

B(S™) = (Br(S*) Br(S%)), (22)
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’ Parameter Default Value ‘
k (FENE) 0.1 pN/nm
¢ 5.66 x 1078 pN - s/nm
o? 1.46 x 10® nm?s~!
binding radius 1 nm
kattacn (WLC) 180,000 s~ ¢
Eattach (FENE) 2,800 s 1
kdetach/k;ttach 2,500
k/detach 0.1 871
kon 2,000 s™*
K 200 s+
knydrolysis 280 571
kll'xydrolysis 3.5 871
kunbind 1.7 S_1

Table 1 Default parameter values. Note that kon depends on the concentration of ATP.
Specifically, we are assuming kon = kAIT[ATP], where kATP = 2uM~'s~! and [ATP] =
1000 uM. The notation k’ denotes the reverse kinetic rate corresponding to k.

4 8 2 4 0 1 2

Fig. 5 The grid of numbered binding sites used to devise the second version of the B matrix.

where

-4 -3 -2 -1 0 1 2
0 0 0 0 0 0 0
0 0 oy koprp 00 0
0 0 0 0 0 0 0

Br(S" )= | 0 0 0 0 0 kyont kg2 (23)
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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and

-4 -3 -2 -1 0 1 2

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Br(S*) = 0 0 0 0 0 0 0

0 0 0 k4F71;1 ke 1019 kapay O

0 0 0 0 0 0 0

k k 0 0 0 0

25,152 k2p,1;1:1;2 25,17 "
(24)

Now each column corresponds to a binding site, and the rates in a given column
correspond to absorptions such that the detached head rebinds at the given site.
We need two replications of the grid in order to keep track of which head detached.
Note that two elements of the matrix show two rates, one for S* = 1 and the other
for S* = 2.

Now that we have formulated the A and B matrices given the value of the initial
separation, we can use them to compute the various probabilities and moments
given in the previous section—and, consequently, Voo, D, and ER—as follows. Our
formulation allows us to write down a distribution for the duration of a step, the
time required for Y (¢) to reach an absorbing state after having left state 1. See (14)
for a more detailed derivation of results that follow. The cumulative distribution
function for 7 is given by

F(t)=1-ad'e®, (25)

where the vector a has a 1 in the first location and the value 0 elsewhere, and 1
is a conformable vector of 1s. And so the corresponding density is

f(t) = —a’Ae?t1. (26)

Hence, the conditional first and second moments of 7 are given by
rse = —a'[A(s%)] 11 (27)
s+ = 2a/[A(s")] 771 (28)

To calculate the conditional moments of Z given S* we need P .. To compute
a given entry in this matrix, P(Z = 2|S* = s*), we construct a vector, ¢, that
contains the value 1 in the locations corresponding to step size z. Using ¢, we can
compute the relevant probability as

P(Z=2|5" =s*) = —d/[A(s%)] 'B(s%)e. (29)

Finally, the conditional cross moment is given by pz g = a'[A(s%)]?B(s%)z,
where the vector z contains the possible values of Z. In the context of our example
model, z = (0,0, -1,—-1,1,1,-2, -2, 2)’ for the first version of B.

We can compute the probability transition matrix for {S};>;, which we call
Pg|s+, in the same way we computed P 7|5, the only difference being that ¢ must
now mark the locations corresponding to the desired ending separation.
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It is important to note that this type of model can be handled by previous
computational methods. Due to the quasi-periodic nature of the underlying kinetic
model, one could, for example, modify the methods of (15; 16) similar to the
modification of the Wang, Peskin, and Elston method found in (28; 29). However,
we are taking a conceptually different approach by stopping the local Markov chain
corresponding to the within-step model after the free head becomes rebound; this
has the advantage of allowing either the front or rear head to become initially
unbound. Thus, the conditions for the computations to be successful are that the
matrix A(s*) be invertible for each relevant s* and for the Markov chain {S};>
to have a unique stationary distribution. Since the transition probabilities for
the Markov chain are derived from the computation, this is checked numerically.
We have included pseudocode and more details about the computation in the
appendix.

4.2 Including Tethered Diffusion

We have now presented a computational framework for handling variable-step ki-
nesins when only a kinetic model is considered. However, our goal is to include the
constrained diffusion of the free head along with transitions in the chemical state
of the motor. To accomplish this we will create a discrete-space approximating
Markov chain for the diffusive part of the within-step model presented in Sec-
tion 2, Y (¢), and couple this to the chemical kinetic process, K (t), through a block
structure for the rate matrix. This formulation is closely related to the computa-
tional approach presented in (14) but is modified here to include variable-length
steps and the effect of such stepping on the following cycle.

Assume that yi1, ..., yn is an evenly spaced grid on the real line with a distance
between grid points of A. We represent an approximating Markov chain for dY () =
a(Y (t))dt+ o(Y (t))dB(t) using the tridiagonal transition matrix, L, with elements

20,
Lii—1= (U éyZ) + a_(yi)A) /A% (30)

2
o2 (us
Ly = (% + a+(yi)4) /A?
Li’j:()if|i—j|>1
Lii =—Lii—1 +Liit1),

where a(y) = a™ (y) —a~ (y) is the drift and o(y) is the diffusion coefficient, which
should be constant in this case of Brownian diffusion in a potential. We use the ap-
proximating Markov chain rates found in (30), but there are alternatives including
one commonly used for motor models, the WPE method (31).

We would like to incorporate this model of diffusion into a computational
framework that also includes chemical transitions; within each chemical state,
the diffusion will be determined by a particular drift function, ay(y). Thus, we
construct an approximating chain for {(Y'(¢), K(¢))} by using a block structure.
The “outer” structure will describe the discrete chemical reactions, and the “inner”
structure will represent the diffusive component of our model. The outer form,
which is quite similar to the matrices given above for the purely kinetic model, is
as follows.
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Ki1 Kipo, 0 0 K14, 0 0
0 Ko,2, Kop 3, 0 0 0 0
0 KBR-,ZR K3R73R K3Rg4R 0 0 O
A=A(S)=] o0 0 Kup3, Kapa, 0 0 0 (31)
0 0 0 0 Kip g, Kap 3; 0
0 0 0 0 Kspar K3p,3: Ksp 2,
0 0 0 0 0 Ko, 3;: Ko 2,
and
0 0
Ko, 1x 0
0 0
B = B(S*) = | Kgg,1, 0 R (32)
0 Ki;1;
0 0
0 Ko. 1,

where the argument S* reminds us that these matrices depend on the initial sepa-
ration of the heads. Notice that B has only two columns here. Since this full model
has a spatial component to account for step sizes and separations, the chemical
component need only keep track of which head detached prior to absorption, hence
the two absorbing states, 1g and 1. This form for B in the full model closely re-
sembles the spatial formulation of B for the purely kinetic model.

We use matrices A and B to construct a transition rate matrix, Q, as before.
We will denote the submatrices of Q as Q; ;. Each n x n submatrix represents the
states corresponding to the points of the spatial grid, where n is the number of
grid points. For a uniform-step motor, a grid that runs from, say, -24 to 16 nm is
sufficient because only four binding sites—at grid points -16, -8, 0, and 8 nm—
are accessible to the motor. Our model considers a motor walking along a single
protofilament of the microtubule; tubulin subunits, corresponding to the kinesin
binding sites, are spaced 8 nm apart along this lattice. But we must have a longer
grid if we wish to accommodate longer steps. The necessary extents of the grid are
determined computationally; see the appendix for guidelines.

A submatrix of A takes one of three forms: a zero matrix, a diagonal matrix, or
a tridiagonal matrix. For example, the matrix Ko, 2, is a tridiagonal matrix with
transition rates corresponding to (30). Note, however, that the diagonal will be
different here—it will be constrained so that the row sums of Q2 ¢ are 0. Since the
rear head detached, the potential should be centered at -4. This can be represented
in the following way:

.......................... 0 Lon—1  —Yon
(33)
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where )", is the sum of all non-diagonal elements of the ith row of matrix Q. The
Le,e entries are as defined above using the local approximation to the diffusion
process.

The entries of matrix K 2, are zero except for the column corresponding to
spatial location —8 - S* nm. Recall that we are conditioning on S*, the separation
of the heads at the beginning of the cycle). This column contains the rate at
which the motor’s rear head becomes detached, kqetach. Similarly, K 4, is zero
except for the column corresponding to spatial location 0, and the nonzero column
contains k.., the rate at which the front head becomes detached. Since the
remaining off-diagonal elements of Q.. are zero matrices, K1 1 is diagonal with
—(kdetach + Kattach) for each entry on the diagonal. Note that this is where we
include a model of inter-head tension by scaling rates kqetach and kbi.c,, Where
the scaling factor increases as S* increases. More specifically, we scale the default
rates by exp(—Ca(8-S5*)dy, /kpT), where ( is the frictional drag coefficient, d;, is
the bond distance that ranges between 0.5 and 4 nm, and kg7 = 4.1 pN-nm is the
Boltzmann constant times absolute temperature. This is similar to the approach
taken by (20) to account for the cargo in a purely stepping motor model.

The matrix Ko, 3, is diagonal with kon on its diagonal, kSTP being the rate at
which the motor transitions from chemical state 2 to chemical state 3. The matrix
is diagonal because a chemical change leaves the free head’s position unchanged.
The matrices of rows 3 and 4 are similar to those of row 2. The matrices K3, 2, and
K4, 3, are diagonal matrices with transition rates kL, and khydrolysis, respectively.
K3, 3, is similar to Kz, 2, but with a different drift function. Here the bias should
be forward, and so the potential should be centered at 4, and thus State 4 has the
same drift function. We model ATP-driven neck linker docking as a 4 nm forward
displacement of the coiled-coil domain relative to the position of the bound head.
Hence, the potential is shifted forward and centered at 4 nm in States 3 and 4.

For the forward cycle, it is left to describe Ko, 1, and K4,,1,, which correspond
to absorption in state 1z. When the tethered head binds it may “jump” from a
nearby location to “land” in the binding site. From chemical state 2, for example,
the free head can bind at any site except 0 (since the bound head is located
there). To represent binding to the open sites, the matrix Ka, 1, is zero with the
exception of the columns corresponding to the possible binding locations. Those
columns consist of g;(y;) for j =1,...,m and i = 1,...,n, where m is the number
of candidate binding sites. The structure of K4, 1, is similar.

The submatrices for the back cycle are similar to those for the forward cycle,
but the geometry is slightly different; since the front head has detached, the bound
head is located at —8-S* nm. The matrices Ku, 3,, K3;,4¢, K3;,2¢, and Ko, 3, are
identical to their counterparts in the forward cycle. Matrices K3, 3, and K, 4,
have the same structure as Ks, 3,, but the drift is now centered at —8 - S* 44
nm. Ko, o, is the same as K, 2,, but its drift is now centered at —8 - S* — 4 nm.
Finally, matrices K4, 1, and Ka, 1, are identical in form to K4, 1, and Ka, 1.,
except the binding site at —8 - S* nm is excluded while binding at 0 is possible.

Because it does not account for dissociation, the form of B given above is suit-
able for computing the asymptotic quantities Voo and D. To compute ER, however,
we must provide an additional absorbing state, call it state (), that represents dis-
sociation. This requires only that we add a column of submatrices to B to arrive
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at
0 0 0
Ko, 1x 0 0
0 0 0
B(S")= | Kuy1n. 0 Ky, (34)
0 K4F71F K4p,®
0 0 0

0 KZF,lF 0

where Ky, g = Ky, 9 = diag(kunbing). We now have a computational framework
for exploring the behavior of models like those presented in Section 2. This will
allow us to investigate different neck linker models and to demonstrate the effect
of inter-head strain when both motors are bound.

5 Modeling Experiments

In this section, we use our framework to interpret the experimentally measured
nanoscale stepping dynamics of kinesins with extended neck linkers from Yildiz et
al(6). We compare their experimental data to results from calulations using the
model developed here, incorporating drift functions corresponding to two com-
peting models of neck linker dynamics: the worm like chain (WLC) model and
the finitely extensible nonlinear elastic (FENE) model. The WLC represents the
polypeptide chain as an entropic spring in which the mechanical stiffness of the
polymer results from the reduction in the number of possible conformational states
as the chain is extended toward its maximum contour length, L. (32). The WLC
drift function is given by

2
. kT [ 1 ly — vol 1 ly—wol) .
a(y) = —sign(y —yo)— | 5 (1 - =——— — -4+ === if |y — yo| < Le,
(v) gn(y yO)ch <4( i 1 I ly — yol < Le

(35)

where Ly is the persistence length of an unstructured polypeptide and L. is the
contour length (equal to 0.365 nm multiplied by the number of amino acids (33;
13)). This drift function is shown in Figure 6.

The FENE model posits a neck linker that allows the tethered head to diffuse
with minimal constraint up to its maximum contour length L., where the neck
linker is inextensible. The corresponding drift function is

aly) = —@ i ly — yol < Le, (36)

where £ is a small spring constant(order of 0.1 pN/nm). Conceptually, this drift in-
creases dramatically as the displacement from yg increases to L., where it abruptly
asymptotes. In practice, the transition rates for the approximating Markov chain
are set to zero, thus preventing movement outside the set boundaries. For each
neck linker mechanical model, motor velocity, effective diffusion, and run length
(the distance the motor moves along the filament during each encounter with the
microtubule) were calculated for motors having a range of neck linker extensions,
matching the motor constructs studied by Yildiz et al (6).
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Fig. 6 The WLC drift function for four values of L,—0.8 nm (solid), 2 nm (dashed), 4 nm
(dotted), and 6 nm (dash-dot).

The wild-type Kinesin-1 neck linker is 14 amino acids in length, and Yildiz
et al(6) introduced variable numbers of proline residues along with two lysines to
add positive charge and one glycine to provide flexibility to extend the neck linker.
They found that extending the neck linker decreased motor velocity but had only
a minimal impact on motor processivity as measured by the run length. These
data are reproduced in Figure 7, along with distributions of measured step sizes,
which were measured by tracking quantum dots attached to one of the two heads.

The calculations for the first model incorporated tethered diffusion of the free
head but did not explicitly consider tension between the heads, such that when
larger steps were taken, the subsequent detachment rate constants were unchanged
(see State 1 in Figure 4). In these “strain-independent” calculations incorporating
the WLC, motor velocity increased moderately with increasing neck linker length
for all L, values tested (See Figure 8). Extending the neck linker had the biggest
effect when the WLC was the stiffest (L, = 0.8 nm) because the forces constraining
diffusion of the head were the largest in this case and extending the neck linker
allowed the tethered head to reach the next binding site more rapidly. The motor
run length also increased when the neck linker was extended, with L, = 0.8 nm
again showing the strongest dependence on the neck linker length for a similar
reason. Faster stepping minimizes the probability the bound head will detach
before the tethered head binds to its next binding site (State 4 in Figure 4),
enhancing processivity. Hence, the strain-independent calculations using the WLC
model failed to reproduce the trends seen in the experimental data. These velocity
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and run length data are qualitatively consistent with our previous calculations
using uniform steps (13; 14).

For calculations incorporating the FENE neck linker model, extending the
neck linker had little effect on either run length or velocity (Figure 8), also in
conflict with the experimental results. The reason for this lack of dependence is
that, because the diffusional search is only minimally constrained by the neck
linker, extending the tether does not substantially reduce the time it takes for the
tethered head to bind. The small decrease in run length and velocity for the 6
proline insertion results from the diffusional search space being increased without
allowing any more binding sites to be accessed. Increasing the insertion to 13
prolines allows access to the next tubulin binding site, permitting the motor to
straddle the adjacent tubulin, resulting in an enhanced velocity and run length.
Hence, neither the WLC, nor the FENE using the strain-independent setting were
able to faithfully reproduce the experimental data. These results are qualitatively
consistent with previous calculations using uniform steps (13; 14)and are in conflict
with the experimental results from Yildiz et al (34).

The next calculations, which we term the strain-dependent model, explicitly in-
corporated inter-head tension. When motors with extended neck linkers took larger
steps, the subsequent strain-dependent rate constants (State 1 in Figure 4) were
adjusted accordingly. Hence, this model not only includes variable-length steps, it
also incorporates the two gating mechanisms, front-head gating and rear-head gat-
ing, thought to underlie kinesin processivity (3; 35; 36). Front head gating, which
is implicitly incorporated into all of the models, is achieved by not allowing ATP to
bind to the leading head in State 1 until the rear head detaches. Rear-head gating
(strain-dependent head detachment) was incorporated into the strain-dependent
model by scaling the default rates of kqetach and kLo, by exp(—C a(8-5*) dy / kpT)
as presented in Subsection 4.2. When this strain-dependent detachment was incor-
porated into the model, the FENE model was not substantially different from the
no-tension case. Larger neck linker extensions had a minimal effect on the motor
velocity and run length (Figure 9). This result makes sense because the 0.1 pN/nm
stiffness means that the inter-head tension built up when the motor takes a large
step has little effect on the resulting strain-dependent rate constants. Hence, in no
case was the FENE model able to reproduce the experimental data.

Incorporating strain-dependent detachment kinetics into the WLC model changes
the behavior in a number of ways. The first effect of extending the neck linker is
to enhance the stepping kinetics by diminishing the restoring force limiting diffu-
sion of the tethered head to its next binding site (State 4 in Figure 4). Second,
with longer neck linkers, the tethered head can also diffuse to binding sites be-
yond the adjacent tubulin subunit, increasing the step size. On the other hand,
extending the neck linker also decreases the strain-dependent detachment kinetics
of the trailing head (State 1 in Figure 4) such that motors with extended neck
linkers wait longer in State 1. But larger steps also lead to enhanced inter-head
tension, mitigating the effect of neck linker extensions on motor velocity. As seen
in Figure 9, velocity decreased with neck linker extension for all cases, while the
run length increased for the stiffest neck linker with the smallest characteristic
bond distance (d, = 2 nm, L, = 2 nm) and was relatively flat for other parame-
ters tested. Thus, by incorporating strain-dependent detachment kinetics into the
variable step model, the qualitative dependence of motor velocity and run length
observed experimentally by Yildiz et al (6) could be reproduced.
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In addition to calculating the velocity and run length results, the model was
able to reproduce the experimentally observed distribution of step sizes for neck
linker extended kinesins (6). When one motor domain is labeled, wild-type kinesin
is observed to take uniform 16 nm steps, but as the neck linker is extended both
larger steps of 24 and 32 nm are seen (corresponding to straddling one or two
tubulin binding sites) as well as backward steps (Figure 7). The step size distri-
butions for the WLC strain-dependent model shown in Figure 10 qualitatively
match the experimental data. In fact, most of the models tested with different
WLC parameters as well as the FENE models reproduced the experimental step
size distributions fairly well.

One interesting point is that extending the neck linker did not substantially
change the mean step size because, although longer neck linkers resulted in both
larger forward steps, they also resulted in a higher frequency of backward steps
(Figure 12). Instead, the change in velocity results in changes in the cycle du-
ration. The insight highlights one benefit of the method presented in the paper.
Decomposing the movement of the motor by time may give additional biological
insight; this contrasts the WPE-type methods where the decomposition is in space
rather than time (31).

6 Conclusions

In this paper, we have presented a model for variable-length stepping based on
a previous framework for uniform-length stepping (13; 14). This formulation is
necessary for modeling kinesin with significantly extended neck linker domains and
is also applicable to modeling processive myosin and dynein motors that are known
to take variable-length steps. In the previous uniform-length stepping framework,
the dynamics of each step was independent of the previous step, and the stochastic
process describing the position of the motor could be represented by a modification
of a renewal-reward process.

The modeling approach described here requires consideration of the initial sep-
aration between the heads of the motor at the beginning of each cycle. We showed
that this sequence of separation values form a stationary Markov chain and can be
included in the calculation of standard experimental quantities, and the process
describing the position of the motor is a particular type of semi-Markov process.
Moreover, this can be done using relatively efficient matrix calculations instead
of time-consuming large-scale stochastic simulations. This greatly facilitates sen-
sitivity analysis, an important feature when there is substantial uncertainty in the
physical parameters of the system.

By incorporating the differences in strain for different initial separations of the
heads, we showed that a worm like chain model for the neck linker is consistent with
the data presented by Yildiz et al (6) and that the inter-head tension is a necessary
component in kinesin stepping. This stands in contrast to the earlier modeling
results presented by (14) and (13), which found the finitely extensible neck linker
to be more plausible. By using a WLC model for the extensibility of the neck
linker and incorporating force-dependent detachment kinetics, the dependence of
motor velocity and run length on neck linker extension as well as the distribution
of step sizes from Yildiz et al (6) were explained.
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A Pseudocode and Computational Miscellanea

Here we provide pseudocode for the matrix computations and show how to choose the extents
of the spatial grid. We use 0 to denote the set of input parameters for the chemical model and
the approximate diffusion, and so € includes chemical rates, a spring constant (for the FENE
scenario), binding radius, etc. Argument s™#* denotes the maximum separation of the heads
when both heads are bound.

Algorithm A.1: COMPUTEVARISTEP(6, s™2%)

for s* <— 1 to s™ax

Construct Q using @ and s*.

Extract A(s*) from Q and invert it.
Extract B(s*).

Compute v = P(Z | S* = s*).

Kz|s+ =V'z

nz|s = v'z2

o5 = —a/[A(s*)] 11

nrjse = 2a/[A(s)] 1

Hzmse = a'[A(sT)]“2B(s7)2

Compute u(s*) =P(S|S* = s*).

Use the u(s*) to construct the tpm for {S}, Pg|g«.
Perform an eigendecomposition of P/, g+ and select the principal eigenvector as mg.

S|
Hr =W g TS
1z = Wy gTs
or =1 g5 — p2
oy = "/Z|s*"'5 - ny
0z« = IJ'/Z7'|S* TS — Hz T

Voo = Lz /pr
D = (V202 + L20% — 2LVaooz,0)/ (2117)
return (Vio, D)

do

We use a few trial runs of the above algorithm to choose the proper extents of the spatial
grid, which are controlled by s™2*. For each candidate s™2*, we use a sequence of n spatial
locations ranging from —(2s™2*+41)-L to (s™*+1)- L. If the resulting tpm for {S} is stochastic
(or at least nearly so), the current value of s™2* is sufficiently large given 8. Otherwise, increase
the candidate value of s™#* and perform another iteration of the algorithm. As s™2* increases
so should n. We used s™2* = 6 and n = 1,000 to produce the plots in this paper.

B Mapping Our Theoretical Variable-Step Results to Experimental
Results

Our model keeps track of both heads and accounts for “steps” of 0 length, but in experiments
only one head is tagged and we cannot observe a renewal unless the tagged head changes
location. Hence, our theoretical distribution for Z does not match the empirical step-size
(henceforth Y') distribution. In this section we develop a mapping from 7z to 7y so that the
results of an in silico experiment can be compared with those of an in vitro experiment.

The mapping uses the joint distribution of S* and S. We can compute the joint pmf
as IIg« s = Pg|s+ @ wg. This matrix is s™2* x s™8*. For each pair of starting and ending
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separations, (s*,s), an experimentalist can see five possible step sizes: 0, +(s* + s), £(s* — s).
This implies that Y € {0, +1,...,+2s™2x},

We need to apportion the s*, s entry of ILg= g, i.e., p=P(S* = s*,S = s), to the possible
values of Y. We do so by handling four cases: RR, RF, FR, and FF, where each pair codes (tagged
head, detached head). For example, RR means the motor’s rear head is tagged and the front
head detaches. If we are about to observe the motor, (rear head tagged)/(front head tagged)
is a fair coin, and so we assign mass p/2 to each of {RR,RF} and {FR,FF}.

Now, the events RF and FR correspond to Y = 0 because these events are unobservable.
Since these events have mass p/2 = (1 — r)p/2 + rp/2, where r = P(rear head detached) =
Edetach/(Kdetach + Kl i1acn), We assign mass p/2 to Y = 0. It is left to spread mass p/2 across
the step sizes that correspond to the events RR and FF. For the first event, the possible step
sizes are s* + s and s* — s. For the second event, the possible step sizes are —(s* + s) and
—(s* — s). It is easy to show that the following mapping Y — Z holds:

s*+s5 — (37)
s*—s5 — (38)
—(s"+s) — —s" (39)
—(s"—s8) = —(s"—29). (40)
This implies the following assignments for the remaining mass:
o« o P(Z = s)
PY=s5"4+s) « PY =s +S)+T]P(Z:s)+]P’(Z:O)p/2 (41)
o PN P(Z = 0)
P(Y=s"—5s) < PY=s )+ ]P(ZZS)—I—]P(ZZO)p/Q (42)
— * 7—8* s —r P(Z:—S*)
P(Y = —(s"+5) + PY =—(s"+s))+(1 )P(Z STy —— _S))p/Q
(43)
=—(s"—s = —(s*—s —r P(Z = —(s* — 5))
) e B A A R R = - s>>p/2<;4>

References
1. D. Hackney, M. Stock, J. Moore, R. Patterson, Biochemistry 42(41), 12011 (2003)
2. R. Vale, R. Milligan, Science 288(5463), 88 (2000)
3. S. Block, Biophysical journal 92(9), 2986 (2007)
4. G. Muthukrishnan, Y. Zhang, S. Shastry, W. Hancock, Current Biology 19(5), 442 (2009)
5. S. Shastry, W.O. Hancock, Current Biology 20(10), 939 (2010). DOI DOI:

10.1016/j.cub.2010.03.065

A. Yildiz, M. Tomishige, A. Gennerich, R. Vale, Cell 134(6), 1030 (2008)

F. Julicher, A. Ajdari, J. Prost, Reviews of Modern Physics 69(4), 1269 (1997)

A. Kolomeisky, M. Fisher, Annual Review of Physical Chemistry (2007)

A. Mogilner, H. Wang, T. Elston, G. Oster, Computational Cell Biology. C. Fall, E. Mar-

land, J. Wagner, and J. Tyson, editors. Springer-Verlag, New York (2002)

10. S.P. Gilbert, M.R. Webb, M. Brune, K.A. Johnson, Nature 373(6516), 671 (1995). 0028-
0836 Journal Article

11. W. Mather, R. Fox, Biophysical Journal 91(7), 2416 (2006)

12. P. Atzberger, C. Peskin, Bulletin of mathematical biology 68(1), 131 (2006)

13. M. Kutys, J. Fricks, W. Hancock, PLoS Computational Biology 6(11), 7004 (2010)

14. J. Hughes, W.O. Hancock, J. Fricks, Journal of Theoretical Biology 269(1), 181 (2011).
DOI DOI: 10.1016/j.jtbi.2010.10.005

15. R.K. Das, A.B. Kolomeisky, The Journal of Physical Chemistry B 112(35), 11112 (2008).
URL http://dx.doi.org/10.1021/jp800982b

16. A.B. Kolomeisky, M.E. Fisher, Biophysical Journal 84(3), 1642 (2003). URL
http://www.sciencedirect.com/science/article/pii/S000634950374973X

©wNo



Modeling Variable-Step Kinesins 25

17.

18.

19.

20.

21.

22.
23.

24.
25.

26.
27.
28.
29.
30.

31.
32.
33.

34.
35.

36.

J.W. Shaevitz, S.M. Block, M.J. Schnitzer, Biophysical Journal 89(4), 2277 (2005). URL
http://www.sciencedirect.com/science/article/pii/S000634950572871X

R. Mallik, B.C. Carter, S.A. Lex, S.J. King, S.P. Gross, Nature 427(6975), 649 (2004).
1476-4687 Journal Article

R.S. Rock, S.E. Rice, A.L. Wells, T.J. Purcell, J.A. Spudich, H.L. Sweeney, Proc Natl
Acad Sci U S A 98(24), 13655 (2001). 0027-8424 Journal Article

Y. Chen, B. Yan, R.J. Rubin, Biophysical Journal 83(5), 2360 (2002). DOI DOI:
10.1016/S0006-3495(02)75250-8

W. Whitt, Stochastic-process limits: an introduction to stochastic-process limits and their
application to queues (Springer Verlag, 2002)

S.M. Block, L.S. Goldstein, B.J. Schnapp, Nature 348(6299), 348 (1990)

R.D. Vale, T. Funatsu, D.W. Pierce, L. Romberg, Y. Harada, T. Yanagida, Nature
380(6573), 451 (1996)

H. Wang, H. Qian, J. Math. Phys. 48(1), 013303 (2007)

W. Hancock, J. Howard, Molecular Motors (Wiley-VCH, Weinheim, Germany, 2003),
chap. Kinesin: processivity and chemomechanical coupling, pp. 243-269

W. Schief, J. Howard, Current Opinion in Cell Biology 13(1), 19 (2001)

R. Cross, Trends in Biochemical Sciences 29(6), 301 (2004)

J. Fricks, H. Wang, T. Elston, Journal of theoretical biology 239(1), 33 (2006)

J. Xing, H. Wang, G. Oster, Biophysical journal 89(3), 1551 (2005)

H. Kushner, P. Dupuis, Numerical methods for stochastic control problems in continuous
time (Springer Verlag, 2001)

H. Wang, C. Peskin, T. Elston, Journal of Theoretical Biology 221(4), 491 (2003)

J. Howard, Sunderland, MA: Sinauer (2001)

L. Pauling, R. Corey, H. Branson, Proceedings of the National Academy of Sciences of the
United States of America 37(4), 205 (1951)

A. Yildiz, M. Tomishige, A. Gennerich, R. Vale, Cell 134, 1030 (2008)

S. Rosenfeld, P. Fordyce, G. Jefferson, P. King, S. Block, Journal of Biological Chemistry
278(20), 18550 (2003)

W. Hancock, J. Howard, Proceedings of the National Academy of Sciences of the United
States of America 96(23), 13147 (1999)



26 John Hughes, William O. Hancock, and John Fricks

2.5
WT
—~2.0
\EE B, =005 Nyog™ 646
%)1'5 6P
=
I 1.0
=
205 13P
0.0
WT OP 2P 4P 6P 13P19P26P 14GS
19P
26P
14GS
0 -52 24 -16 -8 0 8‘ 16 24 32 40 48
WT OP 2P 4P 6P 13P19P26P14GS step size (nm)

Fig. 7 Experimental results from (6). At left, run length and speed from single molecule assays
of kinesins engineered with extended neck linker domains. At right, step size distributions,
measured by monitoring the position of a quantum dot attached to one head domain. With
this geometry, a normal 8 nm step taken by the motor corresponds to a 16 nm displacement
of the labeled head domain (steps in which the unlabeled head takes a step correspond to zero
displacement and arent recorded). 6P to 26P correspond to the number of proline residues
inserted into the neck linker domain (in addition to two lysines and one glycine), and 14GS
denotes a 14 amino acid insert containing glycine and serine residues. Permission for figure
pending from Cell Press (Dec, 2010).
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Fig. 8 Comparison of WLC and FENE for the no tension scenario. Each plot shows asymptotic
velocity, effective diffusion, or expected run length for various neck linker lengths—W'T, 6P,
13P, 19P, and 26P. Each WLC plot shows curves for four values of L,—0.8 nm (solid), 2 nm
(dashed), 4 nm (dotted), and 6 nm (dash-dot). The spring constant for the FENE model was
set at k = 0.1.
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Fig. 9 Comparison of WLC and FENE for the scenario of no strain-dependent detachment.
Each WLC plot shows curves for various combinations of d, and L,—(2, 2) [solid]; (2, 4) [short
dash]; (2, 6) [dot]; (4, 4) [dash-dot]; and (4, 6) [long dash]. Each FENE plot shows curves for
dp equal to 2 [solid] and 4 [long dash] (with x = 0.1).
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Fig. 10 Step-size distributions for the strain-dependent detachment scenario, assuming that
only one head has been tagged. For the WLC plots d, = 2 and L, = 4, and for the FENE
plots dp = 2.
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Fig. 11 Plots of V., D, and ER that correspond to the distributions shown in Figure 10.
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Fig. 12 Plots of Voo, pz, and pr versus neck linker length for the WLC model in the strain-
dependent detachment (dashed) and no strain-dependent detachment (solid) scenarios. L, = 4
for both scenarios, and dj, = 2 for the strain-dependent detachment scenario.



